李祝春

李祝春

李祝春,男,畢業於哈爾濱工業大學,博士畢業後留校任教,2011年09月至2013年8月赴首爾國立大學進行博士後研究,合作導師是國際數學家大會45分鐘邀請報告人Ha Seung-Yeal教授。現任哈爾濱工業大學數學系教授、博士生導師,主要從事套用動力系統多個體耦合系統及套用的研究。

基本介紹

  • 中文名:李祝春
  • 國籍中國
  • 畢業院校:哈爾濱工業大學
  • 職業:教師
  • 職務:基礎數學系(研究所)副主任
  • 職稱:教授
教育經歷,工作經歷,發表論文,

教育經歷

起訖時間
專業
學校
學歷
2005.08-2011.01
數學與套用數學
哈爾濱工業大學
博士
2001.09-2005.07
數學與套用數學
哈爾濱工業大學
本科

工作經歷

起訖時間
職位
工作地點
2020.12-今
教授
哈爾濱工業大學數學學院
2017.04-今
博士生導師
哈爾濱工業大學數學系
2015.01-今
副教授(青年拔尖)
哈爾濱工業大學數學系
2011.03.-2014.12
講師
哈爾濱工業大學數學系

發表論文

[1] Li Z, Xue X. Outer Synchronization of Coupled Networks Using Arbitrary Coupling Strength. 2010.
[2]Li Z, Xue X. Asymptotic Stability Analysis of A Kind of Switched Positive Linear Discrete Systems. 2010.
[3]Li Z, Xue X. Cucker-Smale Flocking under Rooted Leadership with Fixed and Switching Topologies. 2010.
[4] Ha S-Y,Li Z, Xue X. Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. 2013.
[5] Ha S-Y,Li Z. Complete synchronization of kuramoto oscillators with hierarchical leadership. 2014.
[6]Li Z, Xue X, Yu D. Synchronization and transient stability in power grids based on Lojasiewicz inequalities. 2014.
[7]Li Z, Xue X. Cucker-Smale flocking under rooted leadership with free-will agents. 2014.
[8] Ha S-Y, Kim Y,Li Z. Asymptotic synchronous behavior of kuramoto type models with frustrations. 2014.
[9] Ha S-Y, Kim Y,Li Z. Large-time dynamics of kuramoto oscillators under the effects of inertia and frustration. 2014.
[10]Li Z. Effectual leadership in flocks with hierarchy and individual preference. 2014.
[11]Li Z, Ha S-Y, Xue X. Emergent phenomena in an ensemble of Cucker-Smale particles under joint rooted leadership. 2014.
[12] Choi Y-P,Li Z, Ha S-Y, Xue X, Yun S-B. Complete entrainment of Kuramoto oscillators with inertia on networks via gradient-like flow. 2014.
[13]Li Z, Xue X, Yu D. On the Łojasiewicz exponent of Kuramoto model. 2015.
[14]Li Z, Ha S-Y. On the Cucker-Smale flocking with alternating leaders. 2015.
[15]Li Z, Ha S-Y. Uniqueness and well-ordering of emergent phase-locked states for the Kuramoto model with frustration and inertia. 2016.
[16] Ha S-Y, Lee J,Li Z. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators.2017.
[17] Young-Pil,Zhuchun Li. Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays.2018.
[18]Seung-Yeal Ha, Jaeseung Lee,Zhuchun Li,Jinyeong Park.Emergent dynamics of Kuramoto oscillators with adaptive couplings: conservation law and fast learning.2018.
[19]Seung-Yeal Ha, Jaeseung Lee,Zhuchun Li.Synchronous harmony in an ensemble of Hamiltonian meanfield oscillators and inertial Kuramoto oscillators.2018.
[20]Xiaoxue Zhao,Zhuchun Li,Xiaoping Xue.Formation, stability and basin of phase-locking for Kuramoto oscillators bidirectionally coupled in a ring.2018.
[21]Zhuchun Li,Yi Liu,Xiaoping Xue.Convergence and stability of generalized gradient systems by Lojasiewicz inequality with application in continuum Kuramoto model.2019.
[22]Zhuchun Li,Xiaoping Xue.Convergence of analytic gradient-type systems with periodicity and its applications in Kuramoto models.2019.
[23]Young-Pil, Choi,Zhuchun Li.Synchronization of nonuniform Kuramoto oscillators for power grids with general connectivity and dampings.2019.

相關詞條

熱門詞條

聯絡我們