李友榮(教授)

李友榮(教授)

本詞條是多義詞,共3個義項
更多義項 ▼ 收起列表 ▲

李友榮,男,博士,現為重慶大學動力工程學院教授、博士生導師,重慶市工程熱物理學科學術帶頭人,兼任中國能源研究會熱力學及工程套用專業委員會委員、《重慶大學學報》(自然科學版)和《工業加熱》等雜誌編委。多年來一直從事有關傳熱傳質、非平衡熱力學理論與套用、高效換熱技術、熱能利用與節能技術等方面的教學和科研工作,主持國家自然科學基金5項、其它科研項目10餘項,獲省部級科技成果獎2項,獲專利授權10餘項;近年來在國內外學術雜誌和學術會議上發表論文200餘篇,其中被SCI收錄近100篇。

基本介紹

  • 中文名:李友榮
  • 畢業院校:重慶大學
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:工程熱物理
人物經歷,研究方向,在研項目,主講課程,論文發表,國際雜誌,國內雜誌,

人物經歷

1980年進入重慶大學電廠熱能動力專業學習,1984年獲學士學位,1987年獲重慶大學工程熱物理專業碩士學位,1999年獲重慶大學工程熱物理專業博士學位,2000年10月至2002年9月在日本九州大學從事博士後研究。

研究方向

(1) 熱能利用與節能技術;
(2) 對流傳熱傳質理論與套用;
(3) 非平衡熱力學理論與套用;
(4) 熱對流過程的穩定性與失穩機制;
(5) 界面能量傳輸.

在研項目

(1) 國家自然科學基金:具有密度極值流體Rayleigh-Bénard對流結構多樣性研究,編號:51376199
(2) 國家自然科學基金:環形雙組分液池內耦合熱-溶質毛細對流穩定性及耗散結構研究,編號:51176209
(3) 國家973項目子課題:低品位能源利用熱力學不可逆性分布及匹配研究,編號:2011CB710701-3
(4) 高等學校博士學科點專項科研基金:Czocharalski熔體晶體生長中複雜流動結構及其穩定性研究,編號:20110191110015

主講課程

(1) 本科生:傳熱學;
(2) 本科生:換熱器
(3) 研究生:高等傳熱學;
(4) 研究生:熱力系統穩定性理論.

論文發表

國際雜誌

[1] C. M. Wu, Y. R. Li, R. J. Liao, Instability of three-dimensional flow due to rotation and surface-tension driven effects in a Czochralski configuration, International Journal of Heat and Mass Transfer, DOI: 10.1016/j.ijheatmasstransfer.2014.09.002, 2014
[2] C. M. Wu, D. F. Ruan, Y. R. Li, R. J. Liao, Flow pattern transition driven by the combined Marangoni effect and rotation of crucible and crystal in Czochralski configuration, International Journal of Thermal Science, 86: 394-406, 2014
[3] Y. R. Li, X. Q. Wang, X. P. Li, J. N. Wang, Performance analysis of a novel power/refrigerating combined-system driven by the low-grade waste heat using different refrigerants, Energy, 73: 543-553, 2014
[4] Y. P. Hu, Y. R. Li, C. M. Wu, Comparison investigation on natural convection of cold water near its density maximum in annular enclosures with complex configurations, International Journal of Heat and Mass Transfer, 72: 572-584, 2014
[5] Y. R. Li, M. T. Du, C. M. Wu, Shuang-Ying Wu, Chao Liu, Jin-Liang Xu, Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis, Energy, 68: 238-247, 2014
[6] Y. R. Li, J. N. Wang, M. T. Du, S. Y. Wu, C. Liu, J. L. Xu, Effect of pinch point temperature difference on cost-effective performance of organic Rankine cycle, Int. J. Energy Res. 2013; 37:1952-1962
[7] C. M. Wu, Y. R. Li, D. F. Ruan, Aspect ratio and radius ratio dependence of flow pattern driven by differential rotation of a cylindrical pool and a disk on the free surface, Physics of Fluids, 25: 084101, 2013
[8] Y. R. Li, Y. L. Zhou, J. W. Tang, Z. X. Gong, Two-Dimensional Numerical Simulation for Flow Pattern Transition of Thermal-Solutal Capillary Convection in an Annular Pool, Microgravity Sci. Technol., 25: 225-230, 2013
[9] Y. R. Li, Book Review: Marcello Lappa: Rotating thermal flows in natural and industrial processes, Cryst. Res. Technol. 48, No. 8, 582-583 (2013)
[10] C. M. Wu, Y. R. Li, Flow instability driven by the combined temperature gradient and counter rotation of crucible and crystal in a liquid-encapsulated Czochralski configuration, International Journal of Heat and Mass Transfer, 64: 808-816, 2013
[11] Y. R. Li, Y. P. Hu, X. F. Yuan, Three-dimensional structure of natural convection of water with density maximum in horizontal annulus, International Journal of Thermal Science, 71: 274-282, 2013
[12] Y. P. Hu, Y. R. Li, X. F. Yuan, C. M. Wu, Natural convection of cold water near its density maximum in an elliptical enclosure containing a coaxial cylinder, Int. J. Heat Mass Transfer, 60: 170-179, 2013
[13] Y. R. Li, X. F. Yuan, J. W. Tang, Y. P. Hu, Experimental research on natural convective heat transfer of water near its density maximum in a horizontal annulus, Experimental Thermal and Fluid Science, 44:544-549, 2013
[14] Y. R. Li, Y. Q. Ouyang, Y. P. Hu, Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum in a vertical cylindrical container, Physical Review E 86, 046323, 2012
[15] Y. R. Li, Z. X. Gong, C. M. Wu, S. Y. Wu, Steady thermal-solutal capillary convection in a shallow annularpool with the radial temperature and concentration gradients, SCIENCE CHINA Technological Sciences, 55(8): 2176-2183, 2012
[16] Y. R. Li, M. T. Du, J. N. Wang, Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in organic Rankine cycle, Journal of Non-Equilibrium Thermodynamics, 37(4): 413-431, 2012
[17] Y. R. Li, J. N. Wang, M. T. Du. Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle, Energy 42: 503-509, 2012
[18] Y. R. Li, H. R. Zhang, C. M. Wu, J. L. Xu. Effect of vertical heat transfer on thermocapillary convection in an open shallow rectangular cavity. Heat Mass Transfer 48: 241-251, 2012
[19] Y. R. Li, M. T. Du, S. Y. Wu, L. Peng, C. Liu, Exergoeconomic analysis and optimization of a condenser for a binary mixture of vapors in organic Rankine cycle, Energy 40: 341-347, 2012
[20] Y. R. Li, Y. Q. Ouyang, L. Peng, S. Y. Wu, Direct numerical simulation of Rayleigh-Bénard convection in a cylindrical container of aspect ratio 1 for moderate Prandtl number fluid, Phys. Fluids 24, 074103, 2012
[21] Y. R. Li, Y. P. Hu, X. F. Yuan, Natural convection of water near its density maximum around a cylinder inside an elliptical enclosure along slender orientation, Numerical Heat Transfer, Part A, 62: 780-797, 2012
[22] X. F. Yuan, Y. R. Li, Natural convective heat transfer of water near its density maximum in horizontal eccentric annulus, Int. J. Thermal Science, 60(10): 85-93, 2012
[23] Y. R. Li, S. C. Wang, C. M. Wu. Steady thermocapillary-buoyant convection in a shallow annular pool Part 2: Two immiscible fluids. Acta Mechanica Sinica 27(5): 636-648, 2011
[24] Y. R. Li, S. C. Wang, C. M. Wu. Steady thermocapillary-buoyant convection in a shallow annular pool Part 1: Single layer fluid. Acta Mechanica Sinica 27(3): 360-370, 2011
[25] D. F. Ruan, X. F. Yuan, Y. R. Li, S. Y. Wu. Entropy generation analysis of parallel and counter-flow three-fluid heat exchanger with three thermal communications. J. Non-Equilibrium Thermodynamics 36(2): 141-154, 2011
[26] Y. R. Li, X. F. Yuan, C. M. Wu, Y. P. Hu, Natural convection of water near its density maximum between horizontal cylinders, Int. J. Heat Mass Transfer 54: 2550-2559, 2011
[27] Y. R. Li, W. J. Zhang, W. Y. Shi, S. Y. Wu. Thermocapillary-Buoyancy Convection in Annular Two-layer System with Radial Temperature Gradient. Microgravity Science and Technology 23: S9-S14, 2011
[28] B. Lan, Y. R. Li, D. F. Ruan, Numerical Simulation of Thermocapillary Flow Induced by Non-Uniform Evaporation on the Meniscus in Capillary Tubes, Microgravity Science and Technology 23: S35-42, 2011
[29] D. M. Mo, Y. R. Li, W. Y. Shi, Linear-stability Analysis of Thermocapillary Flow in an Annular Two-layer System with Upper Rigid Wall, Microgravity Science and Technology, 23: S43-48, 2011
[30] C. M. Wu, Y. R. Li, Instability of forced flow in a rotating cylindrical pool with a differentially rotating disk on the free surface. Sci. China Tech. Sci., 53(9): 2477-2488, 2010
[31] Y. R. Li, H. R. Zhang, W. Y. Shi, L. Peng. Numerical simulation of thermocapillary convection in a shallow rectangular cavity under the action of combining horizontal temperature gradient with vertical heat flux. Microgravity Sci. Tech., 22: 361-367, 2010
[32] Y. R. Li, S. C. Wang, S. Y. Wu, W. Y. Shi. Asymptotic solution of thermocapillary convection in two immiscible liquid layers in a shallow annular cavity. Sci. China Tech. Sci., 53(6): 1655-1665, 2010
[33] Y. R. Li, W. J. Zhang, L. Peng, Thermal Convection in an Annular Two-layer System under Combined Action of Buoyancy and Thermocapillary Forces. J. Supercond. Nov. Magn., 23: 1219-1223, 2010
[34] X. F. Yuan, Y. R. Li, L. Peng, Y. Liu. Numerical Study on Natural Convection of Water near Its Density Maximum in Horizontal Annulus. J. Supercond. Nov. Magn., 23: 1105-1109, 2010
[35] D. F. Ruan, X. F. Yuan, S. Y. Wu, Y. R. Li. Exergy Effectiveness Analysis of Three-Fluid Heat Exchanger. J. Supercond. Nov. Magn., 23: 1127-1131, 2010
[36] Y. R. Li, S. C. Wang, S. Y. Wu, L. Peng. Asymptotic solution of thermocapillary convection in a differentially heated thin annular two-layer pool. Microgravity Sci. Technol., 22(2): 193-203, 2010
[37] Y. R. Li, S. C. Wang, S. Y. Wu, L. Peng, Asymptotic solution of thermocapillary convection in thin annular two-layer system with upper free surface. Int. J. Heat Mass Transfer, 52: 4769-4777, 2009
[38] Y. R. Li, C. M. Wu, S. Y. Wu, L. Peng, Three-dimensional flow driven by iso- and counter-rotation of a shallow pool and a disk on the free surface. Physics of Fluids, 21: 084102, 2009
[39] Y. R. Li, Y. S. Liu, W. Y. Shi, L. Peng, Stability of thermocapillary convection in annular pools with low Prandtl number fluid. Microgravity Sci. Techn., 21: S283-S287, 2009
[40] Y. R. Li, F. Ling, L. Peng, J. W. Tang. Three-dimensional numerical simulation of thermocapillary flow in a shallow cylindrical pool. Heat Mass Transfer, 45: 1335-1340, 2009
[41] Y. R. Li, X. X. Zhao, S. Y. Wu, L. Peng. Asymptotic solution of thermocapillary convection in a thin annular pool of silicon melt. Physics of Fluids 20, 082107, 2008
[42] Y. R. Li, W. J. Zhang, S. C. Wang. Two-dimensional numerical simulation of thermocapillary convection in annular two-layer system. Microgravity Sci. Techn., 20(3-4): 313-317, 2008
[43] Y. R. Li, L. Xiao, S. Y. Wu, N. Imaishi. Effect of pool rotation on flow pattern transition of silicon melt thermocapillary flow in a slowly rotating shallow annular pool. Int. J. Heat Mass Transfer, 51: 1810-1817, 2008
[44] Y. R. Li, L. Peng, S. Y. Wu, W. Y. Shi. Effect of Crystal Rotation on Thermocapillary Flow in a Shallow Molten Silicon Pool. Microgravity sci. technol. 19(3/4): 163-164, 2007
[45] Y. R. Li, D. M. Mo, L. Peng, S. Y. Wu. Numerical investigation of silicon melt flow in a shallow annular pool under an axial magnetic field. Int. J. Modern Physics B, 21(18/19): 3486-3488, 2007
[46] Q. W. Shang, Y. J. Liu, Y. R. Li, Effect of curvature on thermocapillary-buoyancy convection in shallow annular pool, Heat transfer-Asian Research, 36(4): 187-197, 2007
[47] Y. R. Li, L. Peng, S. Y. Wu, N. Imaishi, Bifurcation of thermocapillary convection in a shallow annular pool of silicon Melt, Acta Mechanica Sinica, 23 (1): 43-48, 2007
[48] L. Peng, Y. R. Li, W. Y. Shi, N. Imaishi, Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool, Int. J. Heat Mass Transfer, 50:872-880, 2007
[49] L. Peng, Y. R. Li, Y. J. Liu, N. Imaishi, T. C. Jen, Q. H. Chen, Bifurcation and hysteresis of flow pattern transition in a shallow molten silicon pool with Cz configuration. Numerical Heat Transfer, Part A, 51: 211-223, 2007
[50] Y. R. Li, L. Peng, W. Y. Shi, N. Imaishi, Convective instability in annular pools. Fluid Dynamics & Materials Processing, 2(3):153-165, 2006
[51] Y. R. Li, Y. J. Liu, L. Peng, Y. Wang, Three-dimensional oscillatory thermocapillary flow in encapsulated liquid bridge. Physics of Fluids, 18(7), 074108, 2006
[52] Y. R. Li, C. J. Yu, S. Y. Wu, L. Peng, N. Imaishi,Global simulation of silicon Czochralski furnace against the assumed thermophysical properties, Cryst. Res. Technol. 41(7): 636-644, 2006
[53] Y. R. Li, X. J. Quan, L. Peng, N. Imaishi, S. Y. Wu, D. L. Zeng, Three-dimensional thermocapillary-buoyancy flow in a shallow molten silicon pool with Cz configuration, Int. J. Heat Mass Transfer, 48(10):1952-1960, 2005
[54] Y. R. Li, S. Y. Wu, L. Peng, C. H. Feng, Natural Convection During Czochralski Single Crystal Growth of Super-Conducting Materials, Modern Physics Letters B, 18(30), 1533-1536, 2004
[55] Y. R. Li, L. Peng, S. Y. Wu, N. Imaishi, and D. L. Zeng, Thermocapillary-buoyancy flow of silicon melt in a shallow annular pool, Cryst. Res. Technol. 39(12): 1055-1062, 2004
[56] Y. R. Li, M. W. Li, N. Imaishi, Y. Akiyama, T. Tsukada, Oxygen-transport phenomena in a small silicon Czochralski furnace, Journal of Crystal Growth 267(3-4): 466-474, 2004
[57] Y. R. Li, L. Peng, S. Y. Wu, D. L. Zeng, N. Imaishi, Thermocapillary convection in a differentially heated annular pool for moderate Prandtl number fluid, Int. J. Thermal Sciences 43(6): 587-593, 2004
[58] Y. R. Li, N. Imaishi, L. Peng, S. Y. Wu, T. Hibiya; Thermocapillary flow in a shallow molten silicon pool with Czochralski configuration, J. Crystal Growth, 266(1-3):88-95, 2004
[59] Y. R. Li, N. Imaishi, Y. Akiyama, L. Peng, S. Y. Wu, T. Tsukada; Effects of temperature coefficient of surface tension on oxygen transport in a small silicon Cz furnace, J. Crystal Growth, 266(1-3): 48-53, 2004
[60] Y. R. Li, N. Imaishi, T. Azami, T. Hibiya; Three-dimensional oscillatory flow in a thin annular pool of silicon melt, J. Crystal Growth, 260(1-2): 28-42, 2004
[61] Y. R. Li, L. Peng, Y. Akiyama, N. Imaishi; Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in annular pool, J. Crystal Growth, 259(4): 374-387, 2003
[62] Y. R. Li, Y. Akiyama, N. Imaishi, T. Tsukada; Global analysis of a small Czochralski furnace with rotating crystal and crucible, J. Crystal Growth, 255(1-2):81-92, 2003
[63] Y. R. Li, D. F. Ruan, N. Imaishi, S. Y. Wu, L. Peng; Global simulation of a silicon Czochralski furnace in an axial magnetic field, Int. J. Heat Mass Transfer, 46(15): 2887-2898, 2003
[64] M. W. Li, Y. R. Li, N. Imaishi, T. Tsukada; Global simulation of silicon Czochralski furnace, J. Crystal Growth, 234(1): 32-46, 2002

國內雜誌

[1] 陳捷超,李友榮,於佳佳,毛細力比對環形液池內耦合熱-溶質毛細對流的影響,工程熱物理學報,2014
[2] 於佳佳,李友榮,陳捷超,Soret效應對環形淺池內溶液熱毛細對流的影響,工程熱物理學報,35(6), 2014
[3] 吳春梅,李友榮,C. A. Ward,玻璃基底上平衡態液滴接觸角特性,工程熱物理學報,35(2): 362-365, 2014
[4] 龔振興,李友榮,彭嵐,吳雙應,石萬元,旋轉環形淺液池內雙組分溶液耦合熱-溶質毛細對流漸近解,物理學報, 62(4): 040201, 2013
[5] 吳春梅,李友榮,C. A. Ward,玻璃基底上水滴穩態蒸發過程中的能量傳輸機制,工程熱物理學報,34(7): 1311-1314, 2013
[6] 吳春梅,李友榮,彭嵐,吳雙應,深徑比對Cz結構內旋轉驅動流動的影響,工程熱物理學報33(1): 97-100, 2012
[7] 李友榮,莫東鳴,彭嵐,石萬元,重力水平對環形液池內熱毛細-浮力對流耗散結構的影響,工程熱物理學報32(8): 1269-1272,2011
[8] 袁曉鳳,李友榮,胡宇鵬,偏心水平環形腔內冷水穩態自然對流的數值模擬,工程熱物理學報32(7): 1191-1194,2011
[9] 李友榮, 王雙成, 石萬元, 吳雙應. 環形腔內雙層薄液層熱毛細對流的漸近解. 力學學報, 42(2): 306-311, 2010
[10] 吳春梅,李友榮,彭嵐,吳雙應. 丘克拉斯基結構液池內旋轉驅動流動及轉變. 工程熱物理學報,31(7): 1181-1184,2010
[11] 李友榮,歐陽玉清,王雙成,吳雙應. 環形淺液池內浮力-熱毛細對流的漸近解. 工程熱物理學報,31(11): 1921-1924,2010
[12] 張鴻儒,李友榮,彭嵐,吳雙應,存在垂直加熱時的矩形池內熱毛細對流的數值模擬,華北電力大學學報,37(3): 64-68, 2010
[13] 李友榮,劉玉姍,石萬元,環形液池內低Pr數流體熱毛細對流的線性穩定性分析,重慶大學學報,32(12): 1403-1407, 2009
[14] 李友榮,魏東海,吳雙應,彭嵐,勾形磁場對矽單晶CZ生長過程影響的全局數值模擬分析,工程熱物理學報,29(6): 1021-1024, 2008
[15] 李友榮,張文杰,王雙成,環形雙層液體內熱毛細對流過程的數值模擬,工程熱物理學報,29(10): 1759-1761, 2008
[16] 趙新興,李友榮,彭嵐,吳雙應,曾丹苓,環形淺液池內熱毛細對流的漸近解,工程熱物理學報,28(4): 676-678, 2007
[17] 李友榮,彭嵐,吳雙應,曾丹苓,Cz結構淺池內矽熔體熱對流的分岔特性,工程熱物理學報,28(6):922-924, 2007
[18] 李友榮,凌芳,彭嵐,吳雙應,開口圓形淺池內低Pr流體的熱毛細對流,熱科學與技術,6(1): 45-50,2007
[19] 李友榮,魏東海,余長軍,彭嵐,吳雙應,物性參數對矽單晶Czochralski生長過程的影響,熱科學與技術,l5(4): 351-355,2006
[20] 李友榮,劉英傑,彭嵐,吳雙應,液封液橋內振盪熱毛細對流的三維數值模擬,工程熱物理學報,27(S2): 5-8, 2006
[21] 李友榮,唐經文,黃旭方,曾丹苓,環形淺液池內熱毛細對流的熱力學特性,工程熱物理學報,27(2): 193-195, 2006
[22] 商其偉,劉英傑,李友榮,曲率對環形淺液池內熱毛細-浮力對流的影響,熱科學與技術,5(1): 22-26, 2006
[23] 李友榮,鄧努波,吳雙應,彭嵐,李明偉,表面張力溫度係數對矽單晶Czochralski法生長過程的影響,材料研究學報,19(4):395-400, 2005
[24] 李友榮,余長軍,吳雙應,彭嵐,軸向磁場對矽單晶Czochralski生長過程的影響,材料研究學報,19(3):249-254, 2005
[25] 李友榮,彭嵐,吳雙應,曾丹苓,今石宣之,矽熔體Cz結構淺池內熱毛細對流轉變滯後特性,工程熱物理學報,26(S): 155-158, 2005
[26] 阮登芳,李友榮,彭嵐,吳雙應,李明偉,晶體旋轉對淺層內熱毛細對流的影響,自然科學進展,15(2):248-251, 2005
[27] 彭嵐,李友榮,曾丹苓,環形液池內中等Pr數流體的浮力—熱毛細對流,力學學報,37(3): 266-271,2005
[28] 彭嵐,封翠華,李友榮,吳雙應,超導材料Y123生長時的流動、傳熱與傳質特性,重慶大學學報,28(5):32-34, 2005
[29] 唐經文,彭嵐,李友榮,曾丹苓,復相系非平衡定態的穩定性,重慶大學學報,28(12):36-38, 2005
[30] 李友榮,彭嵐,吳雙應,李明偉,曾丹苓,環形淺液池內中等Pr數流體的熱毛細對流,工程熱物理學報,25(3): 484-486, 2004
[31] 李友榮,阮登芳,彭嵐,吳雙應,矽單晶Czochralski法生長全局數值模擬 II.質量傳遞特性,材料研究學報,18(2):219-224,2004
[32] 李友榮,阮登芳,彭嵐,吳雙應,矽單晶Czochralski法生長全局數值模擬 I.傳熱與流動特性,材料研究學報,18(2):212-218,2004

相關詞條

熱門詞條

聯絡我們