最佳逼近廣義多項式(generalized polynomials of best approximation)是指達到最佳逼近的廣義多項式,Haar提出了最佳逼近廣義多項式的惟一性定理。
基本介紹
- 中文名:最佳逼近廣義多項式
- 外文名:generalized polynomials of best approximation
- 所屬學科:數學
- 所屬問題:實變函式逼近論
- 相關概念:最佳逼近、廣義多項式等
基本介紹,最佳一致逼近問題,最佳一致逼近多項式,切比雪夫定理,最佳(一致)逼近廣義多項式,哈爾條件,充要條件,唯一性定理,
基本介紹
最佳一致逼近問題
在次數不超過n的多項式集合
中求
,使它與
的誤差
![](/img/e/3d2/wZ2NnL3EDZ4cDZmVTMkNDM2I2YjJmN5EGZ4UDZjNjYyMWNzczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/49e/wZ2NnLldzN2UWYzIjYilzMxMTM1EDNmBTNkBzY5ImZwQDMwE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/199/wZ2NnLhdTYyYGOjBTN1QGZyYDMlNzMzcDMzImYykTNlNWYyQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/25b/wZ2NnLzUDOyUTOmNGOidjMkBjN3cTNihTYwUDZ4YzYmJGNkNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
最佳一致逼近多項式
給定
,若存在
,使
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/a7a/wZ2NnLzkzY3EDZhNjZiNWZzQWZlVmY1UDZ3YDMkRTYmVGZ3MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/cdd/wZ2NnLyITYkFjNidTM2gzNiNDM4YDMldzNhhDNidjYxEmMwEzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/162/wZ2NnLzcjMiZDZjZ2MyIGM5MTZ3EWO3ATO5MWOhlTN4UDZ1U2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/a33/wZ2NnLzQzNxYzNzUjN1MGNyITM0UDZmRTMwQWMxcTZ1EWN0gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/4e3/wZ2NnL3QmN1ATOxQDOwUTNjNzM1QzNlhDM3QTZ3M2MmVGM1MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/8ee/wZ2NnL2ImYyETMilDN5YGMzITMhJzN4YTMhFmMjdTZ0QjZzM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/fdb/wZ2NnLiRTMmdjYxczNzMzNmlDZyQWYxgjYlR2MyQDZwMGZ3M2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
理論上已證明,對任何
,都存在惟一的
,使式(1)成立,實際上在集合
中每一元素,
都對應一個偏差
,由於
,故集合
有下界,從而有下確界
。如果存在
使
就是所要求的最佳一致逼近多項式。切比雪夫(Chebyshev)對最佳一致逼近多項式的特性,給出了下面的重要定理。
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/a7a/wZ2NnLzkzY3EDZhNjZiNWZzQWZlVmY1UDZ3YDMkRTYmVGZ3MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/3d2/wZ2NnL3EDZ4cDZmVTMkNDM2I2YjJmN5EGZ4UDZjNjYyMWNzczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/e8e/wZ2NnLilzYkJDMkVTZiVmNzQWO3QGMlFTO5AzM1MjZkhjN4U2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/857/wZ2NnL5YTYjZjZkZTOxkDZwYGNlFmMmZjZ3MmY1ITYjVDNlFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/c80/wZ2NnL3QjNlVGOhVmN4gTZxczNjhzYxITM3IzYjljM1kTMiRzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/83c/wZ2NnL0MWZlJWZkFmM0ADZhJjYiZjY5MDOlFWYxQmZkF2NhNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/95a/wZ2NnL2Q2N4IWZ4IzM3kjNyUDN1ADN2QmY1UDO2gzYlBDNiF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/a7a/wZ2NnLzkzY3EDZhNjZiNWZzQWZlVmY1UDZ3YDMkRTYmVGZ3MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/e94/wZ2NnL1UmZzkDOiBTO4YmNzYTMiZGZjdjZ1ImYyQzN1AzYzIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
切比雪夫定理
設
是
在[a,b]上的最佳一致逼近多項式的充分必要條件是,
在[a,b]上至少有
個點
![](/img/b/6d0/wZ2NnLzQmYhVWMwMWM3ImMjhDMhJGM4YDNkdzMzcDZ3QGNmV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/4e3/wZ2NnL3QmN1ATOxQDOwUTNjNzM1QzNlhDM3QTZ3M2MmVGM1MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/103/wZ2NnLhBTNiFmMihTY0EjM3QWY2IGZzcTM5MmZ1UDNmVDO5IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/af2/wZ2NnL4IzY0YGZwMTOwMWYyYDOhdTYwUGMyUTM3gDNxATNhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/23e/wZ2NnLzkTZmZDZ5QTZmZjM2YjY0MjNkhjYxUmN2ETNkBjNkZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/768/wZ2NnLjBzYlNjZ3kzY3ImNmZDMzIGZhVDOjNzY0UDMmJWM0E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
這個定理表明,最佳一致逼近多項式
的特性,即
逼近
的誤差分布是均勻的,如圖1所示。
![](/img/1/103/wZ2NnLhBTNiFmMihTY0EjM3QWY2IGZzcTM5MmZ1UDNmVDO5IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/103/wZ2NnLhBTNiFmMihTY0EjM3QWY2IGZzcTM5MmZ1UDNmVDO5IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![圖1 圖1](/img/d/86a/wYyAzM4EjYhRjM5AjNxIGZ2IWOyUTZyUmYklzMiNWM4EGZxUDNjNGZvMWaw9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
最佳(一致)逼近廣義多項式
若在空間
中取子集
,若存在
使
![](/img/1/a56/wZ2NnLzQWY1YWNkRTMhVWY1kjM4YTYlJ2MxkDMwQjM0kzNiNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/a3c/wZ2NnLykjM5YTZyYGO4gTMyQDN4QTNmljNzUTM1EWOyATOxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/c7a/wZ2NnLmNjN4MjZ5AjN3MmY3UDNwYWN2kTO2kzN0UGM2kTOzAzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/7b4/wZ2NnLygTZjlDO2YmZlJGM3YGMiZDNjJ2MmFDZxEWNyUmYjFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/4e9/wZ2NnL2MWNlRjZ0YmY3IWZ4UTYzcDNmhTOiVWOyYDM4YjN5EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/3d2/wZ2NnL3EDZ4cDZmVTMkNDM2I2YjJmN5EGZ4UDZjNjYyMWNzczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/a54/wZ2NnLxkTY5YzMyU2MjVGZ3UWNyUDNkFTYhNTMhhTY5UWM5M2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/757/wZ2NnLygDZ4gTM3QjNwQmZxADNhVWNwIGO1ADZwEGMmRGOmV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/e37/wZ2NnLjJzY0kTM3MjNlZGMhVjNxQmYzETM4QWZhNzMlJmM0MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
哈爾條件
函式
線性無關,若子集
中任一不恆為零的廣義多項式,即
![](/img/1/b2d/wZ2NnL2QzMjVjY4gzNhZ2MlZmYlVTZzkzN1AzMmNGOwcTNihzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/a05/wZ2NnLkZWNyMWZhJWMhlzY1UWOyEzY4IGOwQTY3QGZlVmY5IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/656/wZ2NnL3YmZ4kjM4IGZjljZwMDN0EWZyImMxcjNjZmMlFTN0U2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/8aa/wZ2NnLwMWZ1MmMjJWN0ITZkRGO3gjZ3Y2MmNmYyYWNwYWY3YzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/e82/wZ2NnLlZzMkJzY2MmM0MjZlljZxM2NkZzM0IjMxU2M0QmZwczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
顯然,子集
是滿足哈爾條件的。
![](/img/e/3d2/wZ2NnL3EDZ4cDZmVTMkNDM2I2YjJmN5EGZ4UDZjNjYyMWNzczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
充要條件
有了上述哈爾條件的定義,就可類似定理切比雪夫定理得到下面定理。
定理若子集
滿足Haar條件則對任意給定的函式
,使廣義多項式
![](/img/7/a3c/wZ2NnLykjM5YTZyYGO4gTMyQDN4QTNmljNzUTM1EWOyATOxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/727/wZ2NnL0EWOhFTOjBTNkVWZzQTZ3MDM1ImZ4gjM2UjYlRmZwE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/380/wZ2NnLxMTOiRWMxYGZ1Y2YjVGN1QTNiVTZxEjM3I2NmBDMmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/d43/wZ2NnLmhTOwYWNwQzMwkTM5ADOyQTZiR2YyQDZhhDN0ITZkN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/b01/wZ2NnL4ETMmZDMycDNxkTMlNjNlNGN1YzNhNmNkZGOxI2YiBzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/737/wZ2NnLhFWO1gjMhlDMlhjNzMTY0cTZxYjNwEGOkZmNlVDZ1gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/f50/wZ2NnLxQmNiFTZ4YWYmZDNjVTO1cjYihTZyEjNyETZhFjMxY2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
唯一性定理
Haar還提出了下面的最佳逼近廣義多項式的惟一性定理。
定理 對任何函式
,子集
中存在惟一的最佳逼近廣義多項式的充分必要條件是子集
滿足Haar條件。
![](/img/d/bd7/wZ2NnLlZTZ0QjMycTOkljZjZTM5kjZhFDMmJTMyU2MjJjZxU2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/737/wZ2NnLhFWO1gjMhlDMlhjNzMTY0cTZxYjNwEGOkZmNlVDZ1gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/737/wZ2NnLhFWO1gjMhlDMlhjNzMTY0cTZxYjNwEGOkZmNlVDZ1gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)