施泰納圓族是由複平面上的兩個點確定的一類圓周的總稱。對於給定的a,b兩點,任一阿波羅尼奧斯圓族和施泰納圓族是正交的。 基本介紹 中文名:施泰納圓族外文名:Steiner circles適用範圍:數理科學 簡介,阿波羅尼奧斯圓族,施泰納圓族,推論,性質, 簡介施泰納圓族是由複平面上的兩個點確定的一類圓周的總稱。阿波羅尼奧斯圓族設a,b(a≠b)為兩個復常數,則稱為以a,b為極限點的阿波羅尼奧斯圓族。施泰納圓族稱過a,b兩點的圓族為由a,b確定的施泰納圓族。推論在施泰納圓族中,如果有一線性變換把C1映為自身,則此類變換稱為雙曲變換。如果有一線性變換把C2映為自身,則此類變換稱為橢圓變換。性質對於給定的a,b兩點,任一阿波羅尼奧斯圓族和施泰納圓族是正交的。在施泰納圓族中,有以下主要性質:1、每個C1與每個C2直交。2、極限點a,b關於每個C2都是對稱的。