賽事設定,競賽宗旨,指導原則,規模與數據,比賽時間,組委名單,試題檢索,社會套用,相關意義,格式要求,競賽指南,競賽章程,第一條,第二條,第三條,第四條,第五條,第六條,第七條,第八條,參考資料,競賽參考書,國內教材、叢書,國外參考書,專業性參考書,
賽事設定
競賽宗旨
創新意識 團隊精神 重在參與 公平競爭。
指導原則
指導原則:擴大受益面,保證公平性,推動教學改革,提高競賽質量,擴大國際交流,促進科學研究。
規模與數據
全國大學生數學建模競賽是全國高校規模最大的課外科技活動之一。該競賽每年9月(一般在上旬某個周末的星期五至下周星期一共3天,72小時)舉行,競賽面向全國大專院校的學生,不分專業(但競賽分本科、專科兩組,本科組競賽所有大學生均可參加,專科組競賽只有專科生(包括高職、高專生)可以參加)。同學可以向該校教務部門諮詢,如有必要也可直接與全國競賽組委會或各省(市、自治區)賽區組委會聯繫。
全國大學生數學建模競賽創辦於1992年,每年一屆,目前已成為全國高校規模最大的基礎性學科競賽,也是世界上規模最大的數學建模競賽。2014年,來自全國33個省/市/自治區(包括香港和澳門特區)及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、專科組3114隊)、7萬多名大學生報名參加本項競賽。
比賽時間
2017年比賽時間是9月14號20:00到9月17號24:00,總共76小時,採取通訊方式比賽,比賽地點在各個高校。比賽時間全國統一的,不可以與老師交流,可以在網際網路查閱資料。
同學們在比賽期間應該注意安排時間,以免出現時間不夠用的情況。
組委名單
註:第五屆專家組任期兩年(2010-2011)。2011年底任期屆滿後,組委會對專家組進行了調整,並決定此後不再對外公布專家組成員名單。
第五屆組委會成員名單(2010-2013)及下屬專家組成員名單
第四屆組委會成員名單及下屬專家組成員名單
第一、二、三屆組委第一、二、三屆組委會成員名單及下屬專家組成員名單引各賽區組委會各賽區聯繫方式列表引
[注1] 各賽區聯繫人請注意:若本賽區聯繫e-mail地址發生變化,請通知全國組委會進行修改。
[注2] 全國已成立賽區的有28個省、市、自治區,國內尚未成立賽區的區域組成聯合賽區,其他(境外參賽學生)組成國際賽區,共30個賽區。
試題檢索
試題及優秀候選論文請查詢以下網址
請參考”中國大學生線上“網
請參考”中國數學建模網“網
2017年競賽題目
A題 CT系統參數標定及成像
B題 “拍照賺錢”的任務定價
C題 顏色與物質濃度辨識
D題 巡檢線路的排班
社會套用
數學建模的套用,對於數學建模競賽來說是非常大的促進和動力。國內首家數學建模公司-北京諾亞數學建模科技有限公司在北京成立。已讀博士的魏永生和另外兩個志同道合的同學一起合作的創業項目,源於他們熟悉的數學建模領域。魏永生三人在2003年4月組建了一個大學生數學建模競賽團隊,當年就獲得了國家二等獎,2005年榮獲了國際數學建模競賽的一等獎,同年10月註冊了數學建模愛好者網站,本著數學建模走向社會,走向套用的方向,他們在2007年6月正式確立了以
數學建模套用為創業方向,組建了創業團隊,開啟了創業之路。本月初,北京諾亞數學建模科技有限公司正式註冊,魏永生團隊的創業正式走向正軌。諾亞數學建模正以其專業化的視角不斷拓展業務壯大實力,並積極涉足鐵路交通、公路交通、物流管理等其他相關領域的數學建模及數學模型解決方案 、諮詢服務。魏永生向記者解釋說,也許很多人並不了解數學建模究竟有什麼用途,他舉了個例子,一個火車站,要計算隔多久發一輛車才能既保證把旅客都帶走,又能最大程度的節約成本,這些通過數學建模都能算出最優方案。魏永生介紹說,他們的數學建模團隊已有6年的歷史,彼此配合很默契,也做了數十個大大小小的項目。他們的創業理念是為直接和潛在客戶提供一種前所未有的數學建模最佳化及數學模型解決方案,真正為客戶實現投資收益的最大化、生產成本費用的最小化。
相關意義
1、培養創新意識和創造能力
2、訓練快速獲取信息和資料的能力
3、鍛鍊快速了解和掌握新知識的技能
4、培養團隊合作意識和團隊合作精神
5、增強寫作技能和排版技術
6、榮獲國家級獎勵有利於保送研究生
7、榮獲國際級獎勵有利於申請出國留學
8、更重要的是訓練人的邏輯思維和開放性思考方式
格式要求
l 本科組參賽隊從A、B題中任選一題,專科組參賽隊從C、D題中任選一題(全國評獎時,每個組別一、二等獎的總名額按每道題參賽隊數的比例分配;但全國一等獎名額的一半將平均分配給本組別的每道題,另一半按每道題參賽隊比例分配)。
l 論文用白色A4紙單面列印;上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。
l 論文第一頁為承諾書,具體內容和格式見本規範第二頁。
l 論文第二頁為編號專用頁,用於賽區和全國評閱前後對論文進行編號,具體內容和格式見本規範第三頁。
l 論文題目、摘要和關鍵字寫在論文第三頁上,從第四頁開始是論文正文,不要目錄。
l 論文從第三頁開始編寫頁碼,頁碼必須位於每頁頁腳中部,用阿拉伯數字從“1”開始連續編號。
l 論文不能有頁眉,論文中不能有任何可能顯示答題人身份的標誌。
l 論文題目用三號黑體字、一級標題用四號黑體字,並居中;二級、三級標題用小四號黑體字,左端對齊(不居中)。論文中其他漢字一律採用小四號宋體字,行距用單倍行距。列印文字內容時,應儘量避免彩色列印(必要的彩色圖形、圖表除外)。
l 提請大家注意:摘要應該是一份簡明扼要的詳細摘要(包括關鍵字),在整篇論文評閱中占有重要權重,請認真書寫(注意篇幅不能超過一頁,且無需譯成英文)。全國評閱時將首先根據摘要和論文整體結構及概貌對論文優劣進行初步篩選。
l 論文應該思路清晰,表達簡潔(正文儘量控制在20頁以內,附錄頁數不限)。
l 在論文紙質版附錄中,應給出參賽者實際使用的軟體名稱、命令和編寫的全部計算機源程式(若有的話)。同時,所有源程式檔案必須放入論文電子版中備查。論文及程式電子版壓縮在一個檔案中,一般不要超過20MB,且應與紙質版同時提交。
l 引用別人的成果或其他公開的資料(包括網上查到的資料) 必須按照規定的參考文獻的表述方式在正文引用處和參考文獻中均明確列出。正文引用處用方括弧標示參考文獻的編號,如[1][3]等;引用書籍還必須指出頁碼。參考文獻按正文中的引用次序列出,其中書籍的表述方式為:
[編號] 作者,書名,出版地:出版社,出版年。
參考文獻中期刊雜誌論文的表述方式為:
[編號] 作者,論文名,雜誌名,卷期號:起止頁碼,出版年。
參考文獻中網上資源的表述方式為:
[編號] 作者,資源標題,網址,訪問時間(年月日)。
l 在不違反本規範的前提下,各賽區可以對論文增加其他要求(如在本規範要求的第一頁前增加其他頁和其他信息,或在論文的最後增加空白頁等);從承諾書開始到論文正文結束前,各賽區不得有本規範外的其他要求(否則一律無效)。
l 本規範的解釋權屬於全國大學生數學建模競賽組委會。
[注] 賽區評閱前將論文第一頁取下保存,同時在第一頁和第二頁建立“賽區評閱編號”(由各賽區規定編號方式),“賽區評閱紀錄”表格可供賽區評閱時使用(各賽區自行決定是否在評閱時使用該表格)。評閱後,賽區對送全國評閱的論文在第二頁建立“全國統一編號”(編號方式由全國組委會規定),然後送全國評閱。論文第二頁(編號頁)由全國組委會評閱前取下保存,同時在第二頁建立“全國評閱編號”。
全國大學生數學建模競賽組委會
2012年8月26日修訂
競賽指南
Ⅰ、概念
簡單地說:數模競賽就是對實際問題的一種數學表述。 具體一點說:數學模型是關於部分現實世界為某種目的的一個抽象的簡化的數學結構。 更確切地說:數學模型就是對於一個特定的對象為了一個特定目標,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。數學結構可以是數學公式,算法、表格、圖示等。 數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程(見數學建模過程流程圖)。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
Ⅱ、由來
1985年在美國出現了一種叫做MCM的一年一度大學生數學模型(1987年全稱為Mathematical Competition in Modeling,1988年改全稱為Mathematical Contest in Modeling,其所寫均為MCM)。這並不是偶然的。在1985年以前美國只有一種大學生數學競賽(The William Lowell Putnam mathematical Competition,簡稱Putman(普特南)數學競賽),這是由美國數學協會(MAA--即Mathematical Association of America的縮寫)主持,於每年12月的第一個星期六分兩試進行,每年一次。在國際上產生很大影響,現已成為國際性的大學生的一項著名賽事。該競賽每年2月或3月進行。
中國自1989年首次參加這一競賽,歷屆均取得優異成績。經過數年參加美國賽表明,中國大學生在數學建模方面是有競爭力和創新聯想能力的。為使這一賽事更廣泛地展開,1990年先由中國工業與套用數學學會後與國家教委聯合主辦全國大學生數學建模競賽(簡稱CUMCM),該項賽事每年9月進行。 數學模型競賽與通常的數學競賽不同,它來自實際問題或有明確的實際背景。它的宗旨是培養大學生用數學方法解決實際問題的意識和能力,整個賽事是完成一篇包括問題的闡述分析,模型的假設和建立,計算結果及討論的論文。通過訓練和比賽,同學們不僅用數學方法解決實際問題的意識和能力有很大提高,而且在團結合作發揮集體力量攻關,以及撰寫科技論文等方面將都會得到十分有益的鍛鍊。
Ⅲ、方法引
一、機理分析法 從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函式關係的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛套用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
二、數據分析法 從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函式f(x)的一組觀測值(xi,fi)i=1,2… n,確定函式的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
三、仿真和其他方法
1. 計算機仿真(模擬)--實質上是統計估計方法,等效於抽樣試驗。
① 離散系統仿真--有一組狀態變數。
② 連續系統仿真--有解析表達式或系統結構圖。
2. 因子試驗法--在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構。
3. 人工現實法--基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統。
(參見:齊歡《數學模型方法》,華中理工大學出版社,1996)
Ⅳ、題型
賽題題型結構形式有三個基本組成部分:
一、實際問題背景
1. 涉及面寬--有社會,經濟,管理,生活,環境,自然現象,工程技術,現代科學中出現的新問題等。
2. 一般都有一個比較確切的現實問題。
二、若干假設條件 有如下幾種情況:
1. 只有過程、規則等定性假設,無具體定量數據;
2. 給出若干實測或統計數據;
3. 給出若干參數或圖形;
4. 蘊涵著某些機動、可發揮的補充假設條件,或參賽者可以根據自己收集或模擬產生數據。
三、要求回答的問題 往往有幾個問題(一般不是唯一答案):
1. 比較確定性的答案(基本答案);
2. 更細緻或更高層次的討論結果(往往是討論最優方案的提法和結果)。
Ⅴ、研究生數模競賽
提交一篇論文,基本內容和格式大致分三大部分:
一、標題、摘要部分:
1. 題目--寫出較確切的題目(不能只寫A題、B題)。
2. 摘要--200-300字,包括模型的主要特點、建模方法和主要結果。
3. 內容較多時最好有個目錄。
二、中心部分:
1. 問題提出,問題分析。
2. 模型建立:①補充假設條件,明確概念,引進參數; ②模型形式(可有多個形式的模型); ③模型求解; ④模型性質。
3. 計算方法設計和計算機實現。
4. 結果分析與檢驗。
5. 討論--模型的優缺點,改進方向,推廣新思想。
6. 參考文獻--注意格式。
三、附錄部分:
1. 計算程式,框圖。
2. 各種求解演算過程,計算中間結果。
3. 各種圖形、表格。
競賽章程
第一條
總則
全國大學生數學建模競賽(以下簡稱競賽)是中國工業與套用數學學會主辦的面向全國大學生的民眾性科技活動,目的在於激勵學生學習數學的積極性,提高學生建立數學模型和運用計算機技術解決實際問題的綜合能力,鼓勵廣大學生踴躍參加課外科技活動,開拓知識面,培養創造精神及合作意識,推動大學數學教學體系、教學內容和方法的改革。
第二條
競賽內容
競賽題目一般來源於工程技術和管理科學等方面經過適當簡化加工的實際問題,不要求參賽者預先掌握深入的專門知識,只需要學過高等學校的數學課程。題目有較大的靈活性供參賽者發揮其創造能力。參賽者應根據題目要求,完成一篇包括模型的假設、建立和求解、計算方法的設計和計算機實現、結果的分析和檢驗、模型的改進等方面的論文(即答卷)。競賽評獎以假設的合理性、建模的創造性、結果的正確性和文字表述的清晰程度為主要標準。
第三條
規則
1. 全國統一競賽題目,採取通訊競賽方式,以相對集中的形式進行。
2. 競賽每年舉辦一次,一般在某個周末前後的三天內舉行。
3. 大學生以隊為單位參賽,每隊3人(須屬於同一所學校),專業不限。競賽分本科、專科兩組進行,本科生參加本科組競賽,專科生參加專科組競賽(也可參加本科組競賽),研究生不得參加。每隊可設一名指導教師(或教師組),從事賽前輔導和參賽的組織工作,但在競賽期間必須迴避參賽隊員,不得進行指導或參與討論,否則按違反紀律處理。
4. 競賽期間參賽隊員可以使用各種圖書資料、計算機和軟體,在國際網際網路上瀏覽,但不得與隊外任何人(包括在網上)討論。
5. 競賽開始後,賽題將公布在指定的網址供參賽隊下載,參賽隊在規定時間內完成答卷,並準時交卷。
6. 參賽院校應責成有關職能部門負責競賽的組織和紀律監督工作,保證該校競賽的規範性和公正性。
第四條
組織形式
1. 競賽由全國大學生數學建模競賽組織委員會(以下簡稱全國組委會)主持,負責每年發動報名、擬定賽題、組織全國優秀答卷的複審和評獎、印製獲獎證書、舉辦全國頒獎儀式等。
2. 競賽分賽區組織進行。原則上一個省(自治區、直轄市)為一個賽區,每個賽區應至少有6所院校的20個隊參加。鄰近的省可以合併成立一個賽區。每個賽區建立組織委員會(以下簡稱賽區組委會),負責本賽區的宣傳發動及報名、監督競賽紀律和組織評閱答卷等工作。未成立賽區的各省院校的參賽隊可直接向全國組委會報名參賽。
3. 設立組織工作優秀獎,表彰在競賽組織工作中成績優異或進步突出的賽區組委會,以參賽校數和隊數、征題的數量和質量、無違紀現象、評閱工作的質量、結合本賽區具體情況創造性地開展工作以及與全國組委會的配合等為主要標準。
第五條
評獎辦法
1. 各賽區組委會聘請專家組成評閱委員會,評選本賽區的一等、二等、三等獎,獲獎比例一般不超過三分之一,其餘凡完成合格答卷者可獲得成功參賽獎。
2. 各賽區組委會按全國組委會規定的數量將本賽區的優秀答卷送全國組委會。全國組委會聘請專家組成全國評閱委員會,按統一標準從各賽區送交的優秀答卷中評選出全國一等、二等獎。
3. 全國與各賽區的一、二、三等獎均頒發獲獎證書。
4. 對違反競賽規則的參賽隊,一經發現,取消參賽資格,成績無效。對所在院校要予以警告、通報,直至取消該校下一年度參賽資格。對違反評獎工作規定的賽區,全國組委會不承認其評獎結果。
第六條
異議期制度
1. 全國(或各賽區)獲獎名單公布之日起的兩個星期內,任何個人和單位可以提出異議,由全國組委會(或各賽區組委會)負責受理。
2. 受理異議的重點是違反競賽章程的行為,包括競賽期間教師參與、隊員與他人討論,不公正的評閱等。對於要求將答卷複評以提高獲獎等級的申訴,原則上不予受理,特殊情況可先經各賽區組委會審核後,由各賽區組委會報全國組委會核查。
3. 異議須以書面形式提出。個人提出的異議,須寫明本人的真實姓名、工作單位、通信地址(包括聯繫電話或電子郵件地址等),並有本人的親筆簽名;單位提出的異議,須寫明聯繫人的姓名、通信地址(也應包括聯繫電話或電子郵件地址等),並加蓋公章。全國組委會及各賽區組委會對提出異議的個人或單位給予保密。
4. 與受理異議有關的學校管理部門,有責任協助全國組委會及各賽區組委會對異議進行調查,並提出處理意見。全國組委會或各賽區組委會應在異議期結束後兩個月內向申訴人答覆處理結果。
第七條
經費
1. 參賽隊所在學校向所在賽區組委會交納參賽費。
2. 賽區組委會向全國組委會交納一定數額的經費。
3. 各級教育管理部門的資助。
4. 社會各界的資助。
第八條
解釋與修改
本章程從2008年開始執行,其解釋和修改權屬於全國組委會。
參考資料
競賽參考書
1. 中國大學生數學建模競賽,李大潛主編,高等教育出版社(1998)。
2. 大學生數學建模競賽輔導教材(一)(二)(三),葉其孝主編,湖南教育出版社(1993,1997,1998)。
3. 數學建模教育與國際數學建模競賽 《工科數學》專輯,葉其孝主編, 《工科數學》雜誌社(1994)。
國內教材、叢書
1. 數學模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版;第一版在 1992年國家教委舉辦的第二屆全國優秀教材評選中獲"全國優秀教材獎")。
2. 數學建模算法與套用,司守奎,孫璽菁編著,國防工業出版社(2012)。
3. 數學模型選談(走向數學從書),華羅庚,王元著,王克譯,湖南教育出版社(1991)。
4. 數學建模--方法與範例,壽紀麟等編,西安交通大學出版社(1993)。
5. 數學模型,濮定國、 田蔚文主編,東南大學出版社(1994)。
6. 數學模型,朱思銘、李尚廉編,中山大學出版社(1995)。
7. 數學模型,
陳義華編著,重慶大學出版社(1995)。
8. 數學模型建模分析,蔡常豐編著,科學出版社(1995)。
9. 數學建模競賽教程,李尚志主編,江蘇教育出版社(1996)。
10. 數學建模入門,徐全智、楊晉浩編,成都電子科大出版社(1996)。
11. 數學建模,
沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學出版社(1996)。
12. 數學模型基礎,王樹禾編著,中國科學技術大學出版社(1996)。
13. 數學模型方法,齊歡編著,華中理工大學出版社(1996)。
14. 數學建模與實驗,南京地區工科院校數學建模與工業數學討論班編,河海大學出版社(1996)。
15. 數學模型與數學建模,劉來福、曾文藝編,北京師範大學出版杜(1997)。
16. 數學建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師範大學出版社。
17. 數學模型,譚永基,俞文吡編,復旦大學出版社(1997)。
18. 數學模型實用教程,費培之、程中瑗層主編,四川大學出版社(1998)。
19. 數學建模優秀案例選編(工科數學基地建設叢書),汪國強主編,華南理工大學出版社(1998)。 20. 經濟數學模型(第二版)(工科數學基地建設叢書),洪毅、賀德化、昌志華 編著,華南理工大學出版社(1999)。
21. 數學模型講義,雷功炎編,北京大學出版社(1999)
22. 數學建模精品案例,朱道元編著,東南大學出版社(1999)。
23. 問題解決的數學模型方法,劉來福,曾文藝編著、北京師範大學出版社(1999)。
24. 數學建模的理論與實踐,吳翔,吳孟達,成禮智編著,國防科技大學出版社,(1999)。
25. 數學建模案例分析,白其嶺主編,海洋出版社(2000年,北京)。
26. 數學實驗(高等院校選用教材系列),謝雲蓀、張志讓主編,科學出版社(2000)。
27. 數學實驗,傅鵬、龔肋、劉瓊蓀,何中市編,科學出版社(2000)。
28. 數學建模方法與案例,張萬龍等編著,國防工業出版社(2014)。
29. 數學建模入門與提高,李漢龍等編著,國防工業出版社(2013)。
國外參考書
1.數學模型引論, E.A。Bender著,朱堯辰、徐偉宣譯,科學普及出版社(1982).
2.數學模型,[門]近藤次郎著,官榮章等譯,機械工業出版社,(1985).
3.微分方程模型,(套用數學模型叢書第1卷),[美]W.F.Lucas主編,朱煜民等 譯,國防科技大學出版社,(1988).
4.政治及有關模型,(套用數學模型叢書第2卷),[美W.F.Lucas主編,王國秋 等譯,國防科技大學出版社,(1996).
5.離散與系統模型,(套用數學模型叢書第3卷),[美w.F.Lucas主編,成禮智 等譯,國防科技大學出版社,(1996).
6.生命科學模型,(套用數學模型叢書第4卷),[美1W.F.Lucas主編,翟曉燕等 譯,國防科技大學出版社,(1996).
7.模型數學--連續動力系統和離散動力系統,[英1H.B.Grif6ths和A.01dknow 著,蕭禮、張志軍編譯,科學出版社,(1996).
8.數學建模--來自英國四個行業中的案例研究,(套用數學譯叢第4號), 英]D.Burglles等著,葉其孝、吳慶寶譯,世界圖書出版公司,(1997)
專業性參考書
1.水環境數學模型,[德]W.KinZE1bach著,楊汝均、劉兆昌等編纂,中國建築工 業出版社,(1987)
2.科技工程中的數學模型,堪安琦編著,鐵道出版社(1988)
3.生物醫學數學模型,青義學編著,湖南科學技術出版杜(1990)
4農作物害蟲管理數學模型與套用,蒲蟄龍主編,廣東科技出版社(1990)
5、系統科學中數學模型,歐陽亮編著, E山東大學出版社,(1995)
6、種群生態學的數學建模與研究,馬知恩著,安徽教育出版社,(1996)
7、建模、變換、最佳化--結構綜合方法新進展,隋允康著,大連理工大學出版社, (1986)
8、遺傳模型分析方法,朱軍著,中國農業出版社(1997),中山大學數學系王壽松編輯,2001年4月