拉梅常數

在連續力學中,Lamé常數(也稱為Lamé係數或Lamé參數)是由應變 - 應力關係中出現的λ和μ表示的兩個材料相關量。通常,λ和μ分別被分別稱為Lamé的第一個參數和Lamé的第二個參數。

基本介紹

  • 中文名:拉梅常數
  • 外文名:Lame constants
  • 別稱:拉梅係數、拉梅參數
  • 提出者:Gabriel Lame
  • 套用學科:物理學
  • 原理:應變-應力關係
簡介,擴展,

簡介

在連續力學中,Lamé常數(也稱為Lamé係數或Lamé參數)是由應變 - 應力關係中出現的λ和μ表示的兩個材料相關量。通常,λ和μ分別被分別稱為Lamé的第一個參數和Lamé的第二個參數。
不同環境下,參數
和λ的意義不同。例如,參數μ在流體動力學中被稱為流體的動態粘度;而在與彈性相關的環境中,μ稱為剪下模量,有時用G表示,而不是μ。 通常,符號G與使用楊氏模量配對,符號μ與λ的使用配對。
在均勻和各向同性的材料中,這些定義了三維中的胡克定律
σ=2με+λtr(ε)I
其中σ是應力,ε是應變張量,I是單位矩陣。
在流行的數學文獻中,這兩個參數一起構成均勻各向同性介質的彈性模量的參數,例如,體積模量可以表示為K=λ+(2/3)μ。
雖然剪下模量μ必須為正,但原則上Lamé的第一個參數λ可以為負數;然而,對於大多數材料,它是正的。

擴展

彈性介質中,應力和應變通過應力—應變的本構關係聯繫起來。應力張量應變張量之間最一般的線性關係叫做彈性張量。
在此,我們開始採用腳標符號求和的慣用做法。在乘積中任何重複的腳標都意味著求和是從腳標x到z。方程假定是完全彈性的,當應力作用,材料發生變形時,能量沒有損失和衰減(考慮這些效應可由為複數來模擬)。
彈性張量是一個有81個(3)元素的四階張量。然而,由於應力張量和應變張量的對稱性,它們各自只有六個分量,此時,Cijkl=Cjikl=Cijlk=Cjilk。因此如果不討論預應力問題,應力分量和應變分量之間的表達式可以表示為:上式只有36個彈性常數。因此對於極端的各向異性介質,獨立的彈性參數為21個,這些元素只有21個是獨立的。這21個元素是確定彈性固體的最一般形式的應力—應變關係所必須的。

相關詞條

熱門詞條

聯絡我們