恆星學

恆星學屬於天文術語,以三角視差法為基本測量方法。通過研究恆星的亮度、距離、大小、質量等了解恆星的演化。

基本介紹

  • 中文名:恆星學
  • 外文名:Astrognosy
  • 性質:天文術語
  • 測量基本方法:三角視差法
  • 恆星亮度表示:星等
  • 表面溫度表示:有效溫度
  • 大小表示:視直徑(角直徑)
恆星,距離,星等,溫度,大小,質量,化學組成,物理特性的變化,恆星結構,恆星的演化,恆星光譜分類,赫羅圖,

恆星

是由熾熱氣體組成,能自己發光的球狀或類球狀天體.離地球最近的恆星是太陽。其次是處於半人馬座的比鄰星,它發出的光到達地球需要4.22年。晴朗無月的夜晚,在一定的地點一般人用肉眼大約可以看到3000多顆恆星。藉助於望遠鏡,則可以看到幾十萬乃至幾百萬顆以上。估計銀河系中的恆星大約有一、二千億顆。恆星並非不動,只是因為離我們實在太遠,不藉助於特殊工具和方法,很難發現它們在天上的位置變化,因此古代人把它們認為是固定不動的星體,叫作恆星。
恆星也有自己的生命史,它們從誕生、成長到衰老,最終走向死亡。它們大小不同,色彩各異,演化的歷程也不盡相同。恆星與生命的聯繫不僅表現在它提供了光和熱。實際上構成行星和生命物質的重原子就是在某些恆星生命結束時發生的爆發過程中創造出來的。

距離

測定恆星距離最基本的方法是三角視差法,先測得地球軌道半長徑在恆星處的張角(叫作周年視差),再經過簡單的運算,即可求出恆星的距離。這是測定距離最直接的方法。但對大多數恆星說來,這個張角太小,無法測準。所以測定恆星距離常使用一些間接的方法,如分光視差法、星團視差法、統計視差法以及由造父變星的周光關係確定視差,等等。這些間接的方法都是以三角視差法為基礎的。

星等

恆星的亮度常用星等來表示。恆星越亮,星等越小。在地球上測出的星等叫視星等;歸算到離地球10秒差距處的星等叫絕對星等。使用對不同波段敏感的檢測元件所測得的同一恆星的星等,一般是不相等的。目前最通用的星等系統之一是U(紫外)B(藍)、V(黃)三色系統。B和V分別接近照相星等和目視星等。二者之差就是常用的色指數。太陽的V=-26.74等,絕對目視星等M=+4.83等,色指數B-V=0.63,U-B=0.12。由色指數可以確定色溫度。

溫度

恆星表面的溫度一般用有效溫度來表示,它等於有相同直徑、相同總輻射的絕對黑體的溫度。恆星的光譜能量分布與有效溫度有關,由此可以定出O、B、A、F、G、K、M等光譜型(也可以叫作溫度型)溫度相同的恆星,體積越大,總輻射流量(即光度)越大,絕對星等越小。恆星的光度級可以分為Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ,依次稱為超巨星、亮巨星、巨星、亞巨星、主序星(或矮星)、亞矮星、白矮星。太陽的光譜型為G2V,顏色偏黃,有效溫度約5,770K。A0V型星的色指數平均為零,溫度約10,000K。恆星的表面有效溫度由早O型的幾萬度到晚M型的幾千度,差別很大。

大小

恆星的真直徑可以根據恆星的視直徑(角直徑)和距離計算出來。常用的干涉儀或月掩星方法可以測出小到0.01的恆星的角直徑,更小的恆星不容易測準,加上測量距離的誤差,所以恆星的真直徑可靠的不多。根據食雙星兼分光雙星的軌道資料,也可得出某些恆星直徑。對有些恆星,也可根據絕對星等和有效溫度來推算其真直徑。用各種方法求出的不同恆星的直徑,有的小到幾公里量級,有的大到10公里以上。恆星的大小相差也很大,有的是巨人,有的是侏儒。地球的直徑約為13000千米,太陽的直徑是地球的109倍。巨星是恆星世界中個頭最大的,它們的直徑要比太陽大幾十到幾百倍。超巨星就更大了,紅超巨星心宿二(即天揭座α)的直徑是太陽的600倍;紅超巨星參宿四(即獵戶座α)的直徑是太陽的900倍,假如它處在太陽的位置上,那么它的大小几乎能把木星也包進去。它們還不算最大的,仙王座VV是一對雙星,它的主星A的直徑是太陽的1600倍;HR237直徑為太陽的1800倍。還有一顆叫做柱一的雙星,其伴星比主星還大,直徑是太陽的2000-3000倍。這些巨星和超巨星都是恆星世界中的巨人。
看完了恆星世界中的巨人,我們再來看看它們當中的侏儒。在恆星世界當中,太陽的大小屬中等,比太陽小的恆星也有很多,其中最突出的要數白矮星和中子星了。白矮星的直徑只有幾千千米,和地球差不多,中子星就更小了,它們的直徑只有20千米左右,白矮星和中子星都是恆星世界中的侏儒。我們知道,一個球體的體積與半徑的立方成正比。如果拿體積來比較的話,上面提到的柱一就要比太陽大九十多億倍,而中子星就要比太陽小几百萬億倍。由此可見,巨人與侏儒的差別有多么懸殊。

質量

只有特殊的雙星系統才能測出質量來,一般恆星的質量只能根據質光關係等方法進行估算。已測出的恆星質量大約介於太陽質量的百分之幾到120倍之間,但大多數恆星的質量在0.1~10個太陽質量之間。恆星的密度可以根據直徑和質量求出,密度的量級大約介於109克/立方厘米(紅超巨星)到1013~1016克/立方厘米(中子星)之間。
恆星表面的大氣壓和電子壓可通過光譜分析來確定。元素的中性與電離譜線的強度比,不僅同溫度和元素的豐度有關,也同電子壓力密切相關。電子壓與氣體壓之間存在著固定的關係,二者都取決於恆星表面的重力加速度,因而同恆星的光度也有密切的關係。
根據恆星光譜中譜線的塞曼分裂(見塞曼效應)或一定波段內連續譜的圓偏振情況,可以測定恆星的磁場。太陽表面的普遍磁場很弱,僅約1~2高斯,有些恆星的磁場則很強,能達數萬高斯。白矮星和中子星具有更強的磁場。

化學組成

與在地面實驗室進行光譜分析一樣,我們對恆星的光譜也可以進行分析,藉以確定恆星大氣中形成各種譜線的元素的含量,當然情況要比地面上一般光譜分析複雜得多。多年來的實測結果表明,正常恆星大氣的化學組成與太陽大氣差不多。按質量計算,氫最多,氦次之,其餘按含量依次大致是氧、碳、氮、氖、矽、鎂、鐵、硫等。但也有一部分恆星大氣的化學組成與太陽大氣不同,例如沃爾夫-拉葉星,就有含碳豐富和含氮豐富之分(即有碳序和氮序之分)在金屬線星和A型特殊星中,若干金屬元素和超鈾元素的譜線顯得特彆強。但是,這能否歸結為某些元素含量較多,還是一個問題。
理論分析表明,在演化過程中,恆星內部的化學組成會隨著熱核反應過程的改變而逐漸改變,重元素的含量會越來越多,然而恆星大氣中的化學組成一般卻是變化較小的。

物理特性的變化

觀測發現,有些恆星的光度、光譜和磁場等物理特性都隨時間的推移發生周期的、半規則的或無規則的變化。這種恆星叫作變星。變星分為兩大類:一類是由於幾個天體間的幾何位置發生變化或恆星自身的幾何形狀特殊等原因而造成的幾何變星;一類是由於恆星自身內部的物理過程而造成的物理變星。
幾何變星中,最為人們熟悉的是兩個恆星互相繞轉(有時還有氣環或氣盤參與)因而發生變光現象的食變星(即食雙星)。根據光強度隨時間改變的“光變曲線”,可將它們分為大陵五型、天琴座β(漸台二)型和大熊座W型三種幾何變星中還包括橢球變星(因自身為橢球形,亮度的變化是由於自轉時觀測者所見發光面積的變化而造成的)、星雲變星(位於星雲之中或之後的一些恆星,因星雲移動,吸光率改變而形成亮度變化)等。可用傾斜轉子模型解釋的磁變星,也應歸入幾何變星之列。
物理變星,按變光的物理機制,主要分為脈動變星和爆發變星兩類。脈動變星的變光原因是:恆星在經過漫長的主星序階段以後(見赫羅圖),自身的大氣層發生周期性的或非周期性的膨脹和收縮,從而引起脈動性的光度變化。理論計算表明脈動周期與恆星密度的平方根成反比。因此那些重複周期為幾百乃至幾千天的晚型不規則變星、半規則變星和長周期變星都是體積巨大而密度很小的晚型巨星或超巨星周期約在1~50天之間的經典造父變星和周期約在,0.05~1.5天之間的天琴座RR型變星(又叫星團變星),是兩種最重要的脈動變星。觀測表明,前者的絕對星等隨周期增長而變小(這是與密度和周期的關係相適應的),因而可以通過精確測定它們的變光周期來推求它們自身以及它們所在的恆星集團的距離,所以造父變星又有宇宙中的“燈塔”或“量天尺”之稱。天琴座RR型變星也有量天尺的作用。
還有一些周期短於0.3天的脈動變星(包括'"class=link>盾牌座型變星、船帆座AI型變星和型變星'"class=link>仙王座型變星等),它們的大氣分成若干層,各層都以不同的周期和形式進行脈動,因而,其光度變化規律是幾種周期變化的迭合,光變曲線的形狀變化很大,光變同視向速度曲線的關係也有差異。盾牌座δ型變星和船帆座AI型變星可能是質量較小、密度較大的恆星,仙王座β型變星屬於高溫巨星或亞巨星一類。
爆發變星按爆發規模可分為超新星、新星、矮新星、類新星和耀星等幾類。超新星的亮度會在很短期間內增大數億倍,然後在數月到一、二年內變得非常暗弱。目前多數人認為這是恆星演化到晚期的現象。超新星的外部殼層以每秒鐘數千乃至上萬公里的速度向外膨脹,形成一個逐漸擴大而稀薄的星雲;內部則因極度壓縮而形成密度非常大的中子星之類的天體。最著名的銀河超新星是中國宋代(公元1054年)在金牛座發現的“天關客星”。現在可在該處看到著名的蟹狀星雲,其中心有一顆周期約33毫秒的脈衝星。一般認為,脈衝星就是快速自轉的中子星。
新星在可見光波段的光度在幾天內會突然增強大約9個星等或更多,然後在若干年內逐漸恢復原狀。1975年8月在天鵝座發現的新星是迄今已知的光變幅度最大的一顆。光譜觀測表明,新星的氣殼以每秒500~2,000公里的速度向外膨脹。一般認為,新星爆發只是殼層的爆發,質量損失僅占總質量的千分之一左右,因此不足以使恆星發生質變。有些爆發變星會再次作相當規模的爆發,稱為再發新星。
矮新星和類新星變星的光度變化情況與新星類似,但變幅僅為2~6個星等,發亮周期也短得多。它們多是雙星中的子星之一,因而不少人的看法傾向於,這一類變星的爆發是由雙星中某種物質的吸積過程引起的。
耀星是一些光度在數秒到數分鐘間突然增亮而又很快回復原狀的一些很不規則的快變星。它們被認為是一些低溫的主序前星。
還有一種北冕座R型變星,它們的光度與新星相反,會很快地突然變暗幾個星等,然後慢慢上升到原來的亮度。觀測表明,它們是一些含碳量豐富的恆星。大氣中的碳塵埃粒子突然大量增加,致使它們的光度突然變暗,因而也有人把它們叫作碳爆變星。
隨著觀測技術的發展和觀測波段的擴大,還發現了射電波段有變化的射電變星和X射線輻射流量變化的X射線變星等。

恆星結構

根據實際觀測和光譜分析,我們可以了解恆星大氣的基本結構。一般認為在一部分恆星中,最外層有一個類似日冕狀的高溫低密度星冕。它常常與星風有關。有的恆星已在星冕內發現有產生某些發射線的色球層,其內層大氣吸收更內層高溫氣體的連續輻射而形成吸收線。人們有時把這層大氣叫作反變層,而把發射連續譜的高溫層叫作光球。其實,形成恆星光輻射的過程說明,光球這一層相當厚,其中各個分層均有發射和吸收。光球與反變層不能截然分開。太陽型恆星的光球內,有一個平均約十分之一半徑或更厚的對流層。在上主星序恆星和下主星序恆星的內部,對流層的位置很不相同。能量傳輸在光球層內以輻射為主,在對流層內則以對流為主。
對於光球和對流層,我們常常利用根據實際測得的物理特性和化學組成建立起來的模型進行較詳細的研究。我們可以從流體靜力學平衡和熱力學平衡的基本假設出發,建立起若干關係式,用以求解星體不同區域的壓力、溫度、密度、不透明度、產能率和化學組成等。在恆星的中心,溫度可以高達數百萬度乃至數億度,具體情況視恆星的基本參量和演化階段而定。在那裡,進行著不同的產能反應。一般認為恆星是由星雲凝縮而成,主星序以前的恆星因溫度不夠高,不能發生熱核反應,只能靠引力收縮來產能。進入主星序之後,中心溫度高達700萬度以上,開始發生氫聚變成氦的熱核反應。這個過程很長,是恆星生命中最長的階段。氫燃燒完畢後,恆星內部收縮,外部膨脹,演變成表面溫度低而體積龐大的紅巨星,並有可能發生脈動。那些內部溫度上升到近億度的恆星,開始發生氦碳循環。在這些演化過程中,恆星的溫度和光度按一定規律變化,從而在赫羅圖上形成一定的徑跡。最後,一部分恆星發生超新星爆炸,氣殼飛走,核心壓縮成中子星一類的緻密星而趨於“死亡”(見恆星的形成和演化)。

恆星的演化

當星際物質凝聚成恆星後,恆星的演化就決定於其內部的核反應過程,在穩定狀態下,恆星向內的萬有引力和向外的運動壓力及輻射壓達到平衡。但在某些情況下,這個平衡條件會受到破壞,在不同演化階段的恆星有不同的觀測表現。
在宇宙發展到一定時期,宇宙中充滿均勻的中性原子氣體雲,大體積氣體雲由於自身引力而不穩定造成塌縮。這樣恆星便進入形成階段。在塌縮開始階段,氣體雲內部壓力很微小,物質在自引力作用下加速向中心墜落。當物質的線度收縮了幾個數量級後,情況就不同了,一方面,氣體的密度有了劇烈的增加,另一方面,由於失去的引力位能部分的轉化成熱能,氣體溫度也有了很大的增加,氣體的壓力正比於它的密度與溫度的乘積,因而在塌縮過程中,壓力增長更快,這樣,在氣體內部很快形成一個足以與自引力相抗衡的壓力場,這壓力場最後制止引力塌縮,從而建立起一個新的力學平衡位形,稱之為星坯。
星坯的力學平衡是靠內部壓力梯度與自引力相抗衡造成的,而壓力梯度的存在卻依賴於內部溫度的不均勻性(即星坯中心的溫度要高於外圍的溫度),因此在熱學上,這是一個不平衡的系統,熱量將從中心逐漸地向外流出。這一熱學上趨向平衡的自然傾向對力學起著削弱的作用。於是星坯必須緩慢的收縮,以其引力位能的降低來升高溫度,從而來恢復力學平衡;同時也是以引力位能的降低,來提供星坯輻射所需的能量。這就是星坯演化的主要物理機制。
恆星的成份大部分是H和He,當溫度達到104K以上,即粒子的平均熱動能達1eV以上,氫原子通過熱碰撞就充分的電離了(氫的電離能是13.6eV),在溫度進一步升高后,等離子氣體中氫核與氫核的碰撞就可能引起核反應。對純氫的高溫氣體,最有效的核反應系列是所謂的P-P鏈,其中主要是2D(p,γ)3He反應。D含量只有氫的10-4左右,很快就燃完了。如果開始時D比3He含量多,則反應生成的3H可能就是恆星早期3He的主要來源,由於對流到達恆星表面的這種3He,有可能還保留到現在。
Li,Be,B等輕核和D一樣結合能很低,含量只是H的2×10-9K左右,當中心溫度超過3×106K就開始燃燒,引起(p,α)和(p,α)反應,很快成為3He和4He。中心溫度達到107K,密度達到105kg/m3左右時,產生的氫轉化為He的41H→4He過程。這主要是p-p和CNO循環。同時含有1H和4He是發生p-p鏈反應,有以下三個分支組成:p-p1(只有1H)p-p2(同時有1H、4He)p-p3或假設1H和4He的重量比相等。隨溫度升高,反應從p-p1逐漸過渡到p-p3,而當T>1.5×107K時,恆星中燃燒H的過程就可過渡到以CNO循環為主了。
當恆星內混雜有重元素C和N時,他們能作為觸媒使1H變為4He,這就是CNO循環,CNO循環有兩個分支,或總反應率取決於最慢的14N(p,γ)15O、15N的(p,α)和(p,γ)反應分支比約為2500:1。這個比值幾乎與溫度無關,所以在2500次CNO循環中有一次是CNO-2。在p-p鏈和CNO循環過程中,淨效果是H燃燒生成He,在釋放出的26.7MeV能量中,大部分消耗給恆星加熱和發光,成為恆星的主要來源。
前面我們提到恆星的演化是從主星序開始的,那么什麼是主星序呢?等H穩定地燃燒為He時,恆星就成了主序星。人們發現有百分之八十至九十的恆星都是主序星,他們共同特徵是核心區都有氫正在燃燒,他們的光度、半徑和表面溫度都有所不同,後來證明:主序星的定量上差別主要是質量不同,其次是他們的年齡和化學成份,太陽這段歷程約千萬年。
觀察到的主序星的最小質量大約為0.1M⊙。模型計算表明,當質量小於0.08M⊙時,星體的收縮將達不到氫的點火溫度,從而形不成主序星,這說明對於主序星它有一個質量下限。觀察到的主序星的最大質量大約是幾十個太陽質量。理論上講,質量太大的恆星輻射很強,內部的能量過程很劇烈,因此結構也越不穩定。但是理論上沒有一個質量的絕對上限。
當對某一星團作統計分析時,人們卻發現主序星有一個上限,這說明什麼?我們知道,主序星的光度是質量的函式,這函式可分段的用冪式表示:
L∝Mν 其中υ不是一個常數,它的值大概在3.5到4.5之間。M大反映主序星中可供燃燒的質量多,而L大反映燃燒的快,因此主序星的壽命可近似用M與L的商標來標誌:
T∝M-(ν-1) 即主序星壽命隨質量增大而按冪律減小,如果整個星團已存在的年齡為T,那就可以由T與M的關係式求出一個截止質量MT。質量大於MT的主序星已結束核心的H燃燒階段而不是主序星了,這就是觀察到由大量同年齡星組成的星團有上限的原因。
現在我們就討論觀測到的恆星中大部分是主序星的原因,下表根據一25M⊙的恆燃燒階段星演化模型,列出了各種元素的點火溫度及燃燒所持續的時間。
點火溫度(K)中心溫度(g.cm-3)持續時間(yr)
H 4×1074 7×106
He 2×108 6×102 5×105
C 7×108 6×105 5×102
Ne 1.5×109 4×106 1
O 2×1091×1075×10-2
Si 3.5×1091×1083×10-3
燃燒階段的總壽命7.5×106
從表上看出,原子序數大的核有更高的點火溫度,Z大的核不僅難於點火,點火後燃燒也更劇烈,因此燃燒持續的的時間也就更短。這顆25M⊙恆星演化模型,模型星的燃燒階段的總壽命為7.5×106年,而其中百分之九十以上的時間是氫燃燒階段,即主星序階段。從統計角度講,這表明找到一顆處於主星序階段的恆星幾率要大。這正是觀察到的恆星大多數為主序星的基本原因。
主序後的演化由於恆星形成是它的主要成份是氫,而氫的點火溫度又比其他元素都低,所以恆星演化的第一階段總是氫的燃燒階段,即主序階段。在主序階段,恆星內部維持著穩衡的壓力分布和表面溫度分布,所以在整個漫長的階段,它的光度和表面溫度都只有很小的變化。下面我們討論,當星核區的氫燃燒完畢後,恆星有將怎么進一步演化?
恆星在燃燒盡星核區的氫之後,就熄火,這時核心區主要是氫,他是燃燒的產物外圍區的物質主要是未經燃燒的氫,核心熄火後恆星失去了輻射的能源,它便要引力收縮是一個起關鍵作用的因素。一個核燃燒階段的結束,表明恆星內各處溫度都已低於在該處引起點火所需要的溫度,引力收縮將使恆星內各處的溫度升高,這實際上是尋找下一次核點火所需要的溫度,引力收縮將使恆星內各處的溫度全面的升高,主序後的引力收縮首先點著的不是核心區的氦(它的點火溫度高的太多),而是核心與外圍之間的氫殼,氫殼點火後,核心區處於高溫狀態,而仍沒核能源,他將繼續收縮。這時,由於核心區釋放的引力位能和燃燒中的氫所釋放的核能,都需要通過外圍不燃燒的氫層必須劇烈地膨脹,即讓介質輻射變得更透明。而氫層膨脹又使恆星的表面溫度降低了,所以這是一個光度增加、半徑增加、而表面變冷的過程,這個過程是恆星從主星序向紅巨星過渡,過程進行到一定程度,氫區中心的溫度將達到氫點火的溫度,於是又過渡到一個新階段--氦燃燒階段。
在恆星中心發生氦點火前,引力收縮以使它的密度達到了103g.cm-3的量級,這時氣體的壓力對溫度的依賴很弱,那么核反應釋放的能量將使溫度升高,而溫度升高反過來又加劇核反應速率,於是一旦點火,很快就會燃燒的十分劇烈,以至於爆炸,這種方式的點火稱為“氦閃光”,因此在現象上會看到恆星光度突然上升到很大,後來又降的很低。
另一方面,當引力收縮時它的密度達不到103g.cm-3量級,此時氣體的壓力正比與溫度,點火溫度升高導致壓力升高,核燃燒區就會有所膨脹,而膨脹導致溫度降低,因此燃燒就能穩定的進行,所以這兩種點火情況對演化進程的影響是不同的。
恆星在發生"氦閃光"之後又怎么演變呢?閃光使大量能量的釋放很可能把恆星外層的氫氣都吹走,剩下的是氦的核心區。氦核心區因膨脹而減小了密度,以後氦就有可能在其中正常的燃燒了。氦燃燒的產物是碳,在氦熄火後恆星將有一個碳核心區氦外殼,由於剩下的質量太小引力收縮已不能達到碳的點火溫度,於是他就結束了以氦燃燒的演化,而走向熱死亡。
由於引力塌縮與質量有關,所以質量不同的恆星在演化上是有差別的。
M<0.08M⊙的恆星:氫不能點火,它將沒有氦燃燒階段而直接走向死亡。
0.08<M<0.35M⊙的恆星:氫能點火,氫熄火後,氫核心區將達不到點火溫度,從而結束核燃燒階段。
0.35<M<2.25M⊙的恆星:它的主要特徵是氦會點火而出現"氦閃光"。
2.25<M<4M⊙的恆星:氫熄火後氫能正常地燃燒,但熄火後,碳將達不到點火溫度。
在He反應初期,溫度達到108K量級時,CNO循環產生的13C,17O能和4He發生新的(α,n)反應,形成16O和20Ne,在He反應進行了很長時間後,20Ne(p,γ)21Na(β+,ν)21Na中的21Na以及14N吸收兩個4He形成的22Ne能發生(α,n)反應形成24Mg和25Mg等,這些反應作為能源並不重要,但發出的中子可進一步發生中子核反應。
4<M<8→10M⊙的恆星,這是一個情況不清楚的範圍,或許碳不能點火,或許出現"碳閃光",或許能正常地燃燒,因為這是最後的中心溫度已較高,一些較敏感的因素,如:中微子的能量損失把情況弄得模糊了。
He反應結束後,當中心溫度達到109K時,開始發生C,O,Ne燃燒反應,這主要是C-C反應,O-O反應,以及20Ne的γ,α反應。
8→10M⊙<M的恆星:氫、氦、碳、氧、氖、矽都能逐級正常燃燒。最後在中心形成一個不能在釋放能量的核心區,核心區外面是各種能燃燒而未燒盡的氫元素殼層。核燃燒階段結束時,整個恆星呈現由內至外分層(Fe,Si,Mg,Ne,O,C,He,H)結構。
現在我們已經知道,對質量小於8→10M⊙的恆星,它會因不能到達下一級和點火溫度而結束它的核燃燒階段;對於質量更大的恆星,它將在核心區耗盡燃料之後結束它的核燃燒階段,在這以後,恆星的最終歸宿是什麼?
一旦停止了核燃燒,恆星必定要發生引力收縮,這是因為恆星內部維持力學平衡的壓力是與它的溫度相聯繫的。因此,如果恆星在一?quot;最終"的平衡位形,它必須是一個"冷的"平衡位形,即它的壓力與它的溫度無關。
主序星核心H耗盡後,離開主序是階段開始了它最後的歷程。結局主要取決於質量。對於質量很小的星體由於質量小,物體內部的自引力並不重要,固體內部的平衡是正負離子間的淨庫侖引力於電子間的壓力來達到平衡的。
當星體質量在大些,直到自引力不可忽略時,這時自引力加大了內部的密度和壓力,壓力的加大是物質發生壓力電離,從而逐漸是固體的電約束瓦解,而過渡為等離子氣體。加大質量,即加大密度,此時壓力於溫度無關,從而達到一種"冷的"平衡位形,電漿內電子的動能一大足以在物質內部引起β衰變,這裡p是原子核中的質子,這樣的反應大致在密度達到108g.cm-3的時候,它將逐漸地是負離子體中的原子核變為富中子核,原子核中出現過多的中子,導致核結構鬆散,當密度超過4×1011g.cm-3是中子開始從原子核中分力出來,成為自由中子,自引力於中子間壓力達到平衡。如果當質量變大使中子氣體間壓力已不能抵禦物質自引力,而形成黑洞,但由於大多數恆星演化後階段使得質量小於它的初始質量,例如恆星風,"氦閃光",超新星爆發等,它們會是恆星丟失一個很大的百分比質量,因此,恆星的終局並不是可以憑它的初始質量來判斷的,它實際上取決於演化的進程。那么我們可以得出這樣的結論。8→10M⊙以下的恆星最終間拋掉它的一部分或大部分質量而變成一個白矮星。8→10M⊙以上的恆星最終將通過星核的引力塌縮而變成中子星或黑洞。
現在觀測到的恆星質量範圍為0.1→60M⊙質量小於0.08M⊙的天體不能達到點火溫度。因此,不發光,不能成為恆星。質量大於60M⊙的天體中心溫度過高而不穩定,至今尚未發現。通過討論我們大體可以了解到恆星的演化進程,主要經歷:氣體雲→塌縮階段→主序星階段→主序後階段→終局階段。這對我們進一步了解恆星的演化有很重要的意義。
在地球上遙望夜空,宇宙是恆星的世界。
恆星在宇宙中的分布是不均勻的。從誕生的那天起,它們就聚集成群,交映成輝,組成雙星、星團、星系……
恆星是在熊熊燃燒著的星球。一般來說,恆星的體積和質量都比較大。只是由於距離地球太遙遠的緣故,星光才顯得那么微弱。
古代的天文學家認為恆星在星空的位置是固定的,所以給它起名“恆星”,意思是“永恆不變的星”。可是我們今天知道它們在不停地高速運動著,比如太陽就帶著整個太陽系在繞銀河系的中心運動。但別的恆星離我們實在太遠了,以至我們難以覺察到它們位置的變動。
恆星發光的能力有強有弱。天文學上用“光度”來表示它。所謂“光度”,就是指從恆星表面以光的形式輻射出的功率。恆星表面的溫度也有高有低。一般說來,恆星表面的溫度越低,它的光越偏紅;溫度越高,光則越偏藍。而表面溫度越高,表面積越大,光度就越大。從恆星的顏色和光度,科學家能提取出許多有用信息來。
歷史上,天文學家赫茨普龍和哲學家羅素首先提出恆星分類與顏色和光度間的關係,建立了被稱為“赫-羅圖的”恆星演化關係,揭示了恆星演化的秘密。“赫-羅圖”中,從左上方的高溫和強光度區到右下的低溫和弱光區是一個狹窄的恆星密集區,我們的太陽也在其中;這一序列被稱為主星序,90%以上的恆星都集中於主星序內。在主星序區之上是巨星和超巨星區;左下為白矮星區。
恆星誕生於太空中的星際塵埃(科學家形象地稱之為“星雲”或者“星際雲”)。
恆星的“青年時代”是一生中最長的黃金階段——主星序階段,這一階段占據了它整個壽命的90%。在這段時間,恆星以幾乎不變的恆定光度發光發熱,照亮周圍的宇宙空間。
在此以後,恆星將變得動盪不安,變成一顆紅巨星;然後,紅巨星將在爆發中完成它的全部使命,把自己的大部分物質拋射回太空中,留下的殘骸,也許是白矮星,也許是中子星,甚至黑洞……
就這樣,恆星來之於星雲,又歸之於星雲,走完它輝煌的一生。
絢麗的繁星,將永遠是夜空中最美麗的一道景致。

恆星光譜分類

20世紀初,美國哈佛大學天文台已經對50萬顆恆星進行了光譜研究。並對恆星光譜根據它們中譜線出現情況進行了分類。結果發現它們與顏色也有關係,即藍色的“O”型、藍白色的“B”型、白色的“A”型、黃白色的“F”型、黃色的“G”型、橙色的“K”型、紅色的“M”型等主要類型。實際上這是一個恆星表面溫度序列,從數萬度的O型到2-3千度的M型。丹麥天文學家赫茨普龍和美國天文學家羅素,根據恆星光譜型和光度的關係,建起著名的“光譜-光度圖”,也稱“赫-羅”圖。大部分恆星分布在從圖的左上到右下的對角線上,叫主星序,都是矮星。其它還有超巨星、亮巨星、巨星、亞巨星、亞矮星和白矮星等類型,而這一不同類型表示了它們有不同的光度。赫--羅圖是研究恆星的重要手段之一。它不僅顯示了各類恆星的特點,同時也反映恆星的演化過程。在恆星的光譜分類中,O、B、A型稱為“早型星”;F和G型稱“中間光譜型”;K和M型稱為“晚型星”。20世紀90年代末期,天文學家越過M型把恆星光譜分類擴展到溫度更低的情況,先提出了新的L型,繼而又提出了比L型溫度更低的光譜分類T型。

赫羅圖

恆星的兩個重要的特徵就是溫度和絕對星等。大約100年前,丹麥的艾基納和美國的諾里斯各自繪製了查找溫度和亮度之間是否有關係的圖,這張關係圖被稱為赫羅圖,或者H—R圖。在H-R圖中,大部分恆星構成了一個在天文學上稱作主星序的對角線區域。在主星序中,恆星的絕對星等增加時,其表面溫度也隨之增加。90%以上的恆星都屬於主星序,太陽也是這些主星序中的一顆。巨星和超巨星處在H—R圖的右側較高較遠的位置上。白矮星的表面溫度雖然高,但亮度不大,所以他們只處在該圖的中下方。

相關詞條

熱門詞條

聯絡我們