基本介紹
- 中文名:忠實模
- 外文名:faithful module
- 所屬學科:數學
- 所屬問題:模與同調代數(模論)
基本介紹,定義,定理,相關概念,即約模,余忠實模,忠實模類,本原環,
基本介紹
定義
假定
是
模,如果
時
,即R中任意非零的元不能零化
,那么
叫做忠實模。顯然
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/60f/wZ2NnL2cjY5MmMmJ2MzkDM5kzNmRzM1Y2Y1cTOilTYyEGM0AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/0fa/wZ2NnL4YjM4Q2MzUGNhZWMmRjMhJDM0cTYwEDZ0QWMjBzNhFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/d88/wZ2NnL1MmYyUGZzQDO5QWZmlTY1ImZyQWOxMGZzEDNyQGOzkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/8fd/wZ2NnLmVjNmRmY2MDZ2YmYwIWM1YDN3YWZmRGOmZ2N5YDM4kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/47e/wZ2NnLkJTZzEjN3ImMhNTYlFmYzEjZzgTMygzYlZTN3IDM5Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
假定
模
是既約模,如果R是單環,那么
是忠實模,這是因為
是R的理想,如果
,那么
,這與M是既約的假設不合,因此
。
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/448/wZ2NnLxcTNzcDOhFGM5Y2YiVTY3YDMzEDMyEmNkhDNmNjNwczLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/c0a/wZ2NnL2IGNkFWNmBTN1ADOwYmMhFTN2cDNjRjN3IjZ2UjZ4Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/d4e/wZ2NnL3YmN3MmN2MTN3MTM0EmY1EWY0ImYwkDNzITYxMjY2I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/47e/wZ2NnLkJTZzEjN3ImMhNTYlFmYzEjZzgTMygzYlZTN3IDM5Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理
假定
是
模,那么
是
模,並且是忠實模。
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/1b3/wZ2NnLzUWNjFDZ0YmNlRmZllDO3AzNjVmMmVDO1IWO3M2MhdzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
證明: 因為
,所以
,因此
是
模,再假如
,即
,那么
,所以
,於是
是忠實
模。證畢。
![](/img/2/88f/wZ2NnLycDMkRjMxUGZkVTZwI2N0YTZmdTZ0YTYkFDZ3QWOkR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/5e1/wZ2NnL3MWNzATYiRGMyYWZzQWY2EWY2kTNhRTM3MWMkR2NlN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/135/wZ2NnLkZ2MwImM4ETM5E2YiVmMjZTYhZWZjBTMzE2MjBTYzM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/46b/wZ2NnLyUzN1YmZlF2NjVmY0YWMwY2N0IDNhRmZmVzN2QmZhV2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/9c4/wZ2NnLkBDMyczMxIzN2UDMihDOzUzN5EWZyEzN0UzY0cjN4MzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/c37/wZ2NnLllzM3IGOlNjM0EGNwcTMlVTMiFmN4gTN1IDZkBDOwI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/073/wZ2NnL1QWMmZjMhlTZiJWYhJTOhZjYygzM0IWZhhjNzEmM0E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/5cc/wZ2NnL1UDMiFDN2QWO0MTZ0MjNmJGZ2EzY0QmNxYDZ0Y2NhJzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/135/wZ2NnLkZ2MwImM4ETM5E2YiVmMjZTYhZWZjBTMzE2MjBTYzM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
相關概念
即約模
假如N是
模M的子加群,同時又是
模,那么N叫做V的子模。
的子模是R的左理想,
的子模是R的右理想。同群一樣,模也有商模或差模。只由一個零元組成的
模叫做零模,用0表示。任意模M都有0及M自身這兩個子模。只有這兩個平凡子模的模,叫做單模。假如
模M是單模,如果
,那么M叫做既約模,環R的左理想如果又是既約模,叫做R的既約左理想。環R有單位元時它的極小左理想是既約模,因此是R的既約左理想,再假如M是既約模,因為
,所以M=RM。又如果
,那么
,這是因為如果
,設
={
整數或0},那么
。於是N是M的子模,今
,所以N=M,因此RM=0。這與M是既約的假設不合。
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/f4a/wZ2NnLxkDOxIDZ3gDM3ETMzgDZwMWY0Q2MwkzY5YmMhJTY1QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/f47/wZ2NnL4MDZ0MDM5gTY1MDNjJzM2UjMjJ2N3cTNyE2YlVWYkR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/961/wZ2NnLmVTZhhjNzQGNyMGZiRmNkNmY1EmMmhjYlVTNkJjZhF2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/d7b/wZ2NnLhVTZ5gzM4MmMzYzYmJGNyYWM4E2Y2UGMkBTMwEWY0czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/d7b/wZ2NnLhVTZ5gzM4MmMzYzYmJGNyYWM4E2Y2UGMkBTMwEWY0czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/1e1/wZ2NnLzkTZhNTY5QGOmJDNwgzNkhTZyUGZ3MGMxEGM4ATZ0I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/8e1/wZ2NnL3gDM5UjMxYWMxImN1AzYhJ2N3YDOyUWZxgjMllTY2UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/a2c/wZ2NnLzUjZidTN1ETZkFGMhJzN1IjM0YTOjBDOmlDN2kzY4Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/067/wZ2NnLxQGZjVmNxgjYwQDO2UzMwEjM5U2NkVWY1IjY5EzNzYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/5cc/wZ2NnL0UGZmhzY0MzNiZTMwcTZiJDNllDOkNWMkRTNyIzN3Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/195/wZ2NnLiBTZxImMkljZlZGNhVGO2YDMwgzM1QjZxUDM3UjYlZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/a18/wZ2NnLiFWM3MGNkVjMwgjNwcjZjJTOxEjMyEDZ4MmN1IjYlN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
定理 假定R是環,那么
是既約模的必要充分條件是R是體。
![](/img/e/f4a/wZ2NnLxkDOxIDZ3gDM3ETMzgDZwMWY0Q2MwkzY5YmMhJTY1QzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
余忠實模
余忠實模(co-faithful module)是一種特殊的模,是忠實模的對偶概念。設M是A模,若它生成每一個內射A模,則稱M是余忠實模。一個模M是忠實的充分必要條件是,M餘生成每一個投射模;而模AM是余忠實的充分必要條件是,M有限餘生成正則模AA。每一個余忠實的擬內射模一定是內射模。
忠實模類
對每個環A,給定非平凡右A模的一個類
,定義
的核為
中全體A模的零化子的交集
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/f00/wZ2NnL0QWNxkzNyEDOzEzYhFDZ1ITMhlDM2kTYjNzMhJzYwQzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/edd/wZ2NnL5ATNkBzMzIWN2IjNiV2NiFDNhJDZ5QjZjFWNzYGN1E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/717/wZ2NnL5kzMjNTO1MWNxcTMzQ2NldjN0AjNxcDNyEDM0IWN4Q2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/f5d/wZ2NnL2UDOwETYxEDNlRzMxYGM1MTZwgDNhZTM5UTYyYzMiR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
1.
蘊涵
,其中B是A的理想。
![](/img/2/630/wZ2NnLwczM0QmZ5gjNiZjZiVWZ0kDO4AzMhZTMzATZzEmZ1EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/69b/wZ2NnL1YTOkFjYxI2YzcTMjRGZjJmY2kjM0gTYwkTYwMmN4E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
2.
,A的理想
蘊涵
。
![](/img/0/69b/wZ2NnL1YTOkFjYxI2YzcTMjRGZjJmY2kjM0gTYwkTYwMmN4E2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/510/wZ2NnL3MjMwUTY1EWY2QmZ2QmZxY2YiBDO0UDZ1MDNkVzYmZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/2/630/wZ2NnLwczM0QmZ5gjNiZjZiVWZ0kDO4AzMhZTMzATZzEmZ1EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
3.若
忠實,則對A的每個非零理想B,
非空。
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/d85/wZ2NnLhZmMhNWZwI2N3QWZkJTNxUTNyUTZ5EDZhJmM3UWN4IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
4.若對環A的每個非零理想B,
非空,則
忠實。
![](/img/c/d85/wZ2NnLhZmMhNWZwI2N3QWZkJTNxUTNyUTZ5EDZhJmM3UWN4IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
一般模類M確定一個根性質,只要規定環A的根
為模類
的核,給定一個根性質R,也可構造一個一般模類M,使得對任意環A,均有
,稱這樣的一般模類M為根性質R的模表示或模刻畫。
![](/img/4/555/wZ2NnLmdTYxgDOzETYklzYxkzN4gzMmhTYxYjYhJDOkFGZhlzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/9f4/wZ2NnLlJzY3kjM5UmYkJGN1ATZiJDZwQ2Y2MmN0gzNlJGM2gzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/5e7/wZ2NnLhRGO1UWNiljZ3IzNlVWOiZTZzAjMwIDMzMzMyQWZ4M2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
本原環
本原環(primitive ring)是一類重要的環,是研究雅各布森根時引入的,其後被廣泛討論與套用,若環R有一個忠實右(左)R單模(即忠實既約右(左)R模),則稱R為右(左)本原環。通常將右本原環簡稱本原環。一般說來,左本原環未必是本原環,但當R有極小單側理想時,左本原性與本原性一致。任何本原環皆為素環。雅各布森(Jacobson,N.)引入本原環來代替有限條件下的單環,從而得出在沒有有限條件限制下的一般半單環的結構定理,這是環論的重大發展。