心室舒張期,分為等容舒張期、快速充盈期和緩慢充盈期。(1)等容舒張期 心室開始舒張後,心室內壓下降。當它低於動脈壓時,動脈內血液向心室反流,致使主動脈瓣、肺動脈瓣關閉,產生第二心音(S2, the second heart sound)。此時,心室內壓任然高於心房內壓,三尖瓣、二尖瓣仍然處於關於狀態,心室再次成為封閉的腔室,心室舒張不納血,心室容積恆定,稱為等容舒張期,歷時約60毫秒。其特點是,心室內血壓大幅下降,血壓下降率最大。結合臨床,就能理解主動脈關閉不全和二尖瓣狹窄時的心雜音特點。當心室開始舒張,室內壓下降至於主動脈壓時,若主動脈瓣關閉不全,主動脈內血液向心室方向反流,產生心雜音,與第二心音幾乎同時產生,屬於舒張期早期雜音。而二尖瓣狹窄時,只能發生與等容舒張期之後,二尖瓣開放血液快速向心室充盈時才發生雜音,始於等容舒張期之後,屬於舒張中晚期雜音。(2)快速充盈期 等容舒張期後,心室繼續舒張,當心室內壓下降至低於心房內壓是,二尖瓣、三尖瓣開放,心房內血液被快速“抽吸”流入心室,心室容積迅速增大,成為快速充盈期,歷時110毫秒左右。如果二尖瓣、三尖瓣狹窄,瓣膜開放受到阻力而產生開瓣音(open snap)。此期間,心臟處於全心舒張期,心室內壓接近零,甚至出現負壓,心房內血液快速充盈心室,期充盈量占整個充盈量的70%-80%,是心室充盈的主要階段。期間可能會產生第三心音(S3,the third heart sound)。第三心音的產生機制尚不明確,一般認為它與心室快速充盈及血流快速下降有關。(3)緩慢充盈期 快速充盈期後,隨著心室內血液不斷增多及壓力升高,心室、心房之間的壓力梯度逐漸減小,血液流入心室的速度逐漸減慢,成為緩慢充盈期,歷時約220毫秒。
[3] Hsieh BP, Unver K, Mcnulty E, Schiller NB. The amplitude ratio of the first to second heart sound is reduced in left ventricular systolic dysfunction. Int J Cardiol 145: 133-135, 2010.
[4] Hansen PB, Luisada AA, Miletich DJ, Albrecht RF. Phonocardiography as a monitor of cardiac performance during anesthesia. Anesth Analg 68: 385-387, 1989.
[5] Lakier JB, Fritz VU, Pocock WA, Barlow JB. Mitral components of the first heart sound. Br Heart J 34: 160-166, 1972.
[6] Luisada AA, Singhal A, Portaluppi F, Strozzi C. Noninvasive index of cardiac contractility during stress testing: a collaborative study. Clin Cardiol 8: 375-384, 1985.
[7] Luisada AA, Liu CK, Aravanis C, Testelli M, Morris J. On the mechanism of production of the heart sounds. Am Heart J 55: 383-399, 1958.
[8] Sakamoto T, Kusukawa R, Maccanon DM, Luisada AA. Hemodynamic determinants of the amplitude of the first heart sound. Circ Res 16: 45-57, 1965.
[9] Sakamoto T, Kusukawa R, Maccanon DM, Luisada AA. First heart sound amplitude in experimentally induced alternans.Chest 50: 470-475, 1966.
[10] Stept ME, Heid CE, Shaver JA, Leon DF, Leonard JJ. Effect of altering PR interval on the amplitude of the first heart sound in the anesthetized dog. Circ Res 25: 255-263, 1969.
[11] Barbara Erckson. Heart sounds and murmurs across the lifespan (Fourth Edition). Elsevier Pte Ltd., 2009
王永興等譯. 心臟聽診進階教程—心音與雜音. 世界圖書出版公司,西安,2009.
[12] E. M. Brown. Heart sounds made easy. Elsevier Science Limited. 2002
[13] 薛小臨等譯. 心臟聽診簡明教程—入門捷徑與實戰技巧. 世界圖書出版公司,西安,2005.
[14] 游衛華,陳哲林,李宗文,楊振華. 臨床血液動力監測學. 廣東人民出版社,廣州,2004.
[15] P. M. Shan, M. Mori, D. M. Maccanon, A. A. Luisada. Hemodynamic correlates of the various components of the first heart sound. Circulation research, 1963, 12: 386-392.
[16] T. Sakamoto, R. Kusukawa, D. M. Maccanon, A. A. Luisada, Ivan Harvey. Hemodynamic determinants of the amplitude of the first heart sound. Circulation research, 1965, 16: 57-57.
[17] T. E. Piemme, G. O. Barnett, L. Dexter. Relationship of Heart sounds to acceleration of blood flow. Circulation research, 1966, 18: 303-315.
[18] C. Longhini, E. Baracca, C. Brunazzi, M. Vaccari, L. Longhini, F. Barbaresi. A new noninvasive method for estimation of pulmonary arterial pressure in mitral stenosis. The American journal of cardiology, 1991, 68, 398-401.
[19] D. Chen, P. Pibarot, G. Honos, L. G. Durand. Estimation of pulmonary artery pressure by spectral analysis of the second heart sound. American Journal of Cardiology, 1996, 78: 785-789.
[20] C. Tranulis, L. G. Durand, L. Senhadji, P. Pibarot. Estimation of pulmonary arterial pressure by a neural network analysis using features based on time-frequency representations of the second heart sound. Medical & biological enginerring & computing, 2002, 40: 205-212.
[21] J. Xu, L. G. Durand, P. Pibarot. A new, simple, and accurate method for non-invasive estimation of pulmonary arterial pressure. Heart, 2002, 88: 76-80.
[22] A. Dennis, A. D. Michaels, P. Arand, D. Ventura. Noninvasive diagnosis of pulmonary hypertension using heart sound analysis. Computers in biology and medicine, 2010, 40: 758-764.
[23] D. W. Suobank, A. P. Yoganathan, E. C. Harrison, W. H. Corcoran. A quantitative method for the in vitro study of sounds produced by prosthetic aortic heart valves part I: analytical considerations. Medical & Biological Engineering & computing, 1984, Jan, 32-39.
[24] S. Xiao, S. Cai, G. Liu. Studying the significance of cardiac contractility variability. IEEE engineering in medicine and biology, 2000, May/June, 102-105.
[25] S. Xiao, X. Guo, X. Sun, Z. Xiao. A relative value method for measuring and evaluating cardiac reserve. Biomedical Engineer Online, 2002, 6: 1-6.
[26] L. Xiong, S. Xiao, Q. Zhou, X. Wu, Z. Xiao, X. Guo, D. Lu, W. Zhao, X. Wu, X. Yan, Y. Zhao, J. Liu. Multi-center pragmatic studies evaluating the time indicator of cardiac perfusion reserve. Journal of Biomedical Science and Engineering. 2013; 6(1):1-7.
[27] X. Guo, X. Ding, M. Lei, M. Xie, L. Zhong, S. Xiao. Non-invasive monitoring and evaluating cardiac function of pregnant women based on a relative value method. Acta Physiol Hung. 2012, 99(4):382-91.
[28] X. Yang, W. Zeng. A Relative Value Method for Measuring and Evaluating Neonatal Cardiac Reserve. Indian Journal of Pediatrics, 2010, 77(6): 661-664.
[36] M. Ursino. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. The American physiological society, 1998: H1733-H1747.
[37] X. Zhang, E. M. Pherson, Y. Zhang. Relations between the timing of the second heart sound and aortic blood pressure. IEEE transactions on biomedical engineering, 2008, 55(4):1291-1297.
[42] H. Tang, J. Gao, Yongwan Park. Heart valve closure timing intervals in response to left ventricular blood pressure. Journal of Biomedical Science and Engineering, 2013, 6(1): 65-75.
[45] H. Tang, C. Ruan, T. Qiu, Y. Park, Shouzhong Xiao. Reinvestigation of the relationship between the amplitude of the first heart sound to cardiac dynamics. Physiological reports, 2013, 1(3), e00053 page 1-page 9.
[46] H. Tang, T. Li, T. Qiu, Y. Park. Segmentation of heart sounds based on dynamic clustering. Biomedical signal processing and control, 2012, 7: 509-516.
[47] T. Li, H. Tang, T. Qiu, Y. Park. Best subsequence selection of heart sound recording based on degree of sound periodicity. Electronics letter, 2011, 47(15), 841-843.
[48] H. Tang, T. Li, Y. Park, T. Qiu. Separation of Heart Sound Signal from Noise in Joint Cycle Frequency-Time-Frequency Domains Based on Fuzzy Detection. IEEE Transactions on biomedical engineering, 2010, 57(10):2438-2447.
[49] H. Tang, T. Li, T. Qiu. Noise and Disturbance Reduction for Heart Sounds in the Cycle Frequency Domain Based on Non-linear Time Scaling. IEEE Transactions on biomedical engineering, 2010, 57(2):325-333.
[50] T. Li, H. Tang, T. Qiu, Y. Park. Heart sound cancellation from lung sound record using cyclostationarity. Medical engineering & physics, 2013, 35: 1831-1836.
[51] T. Li, T. Qiu, H. Tang. Optimum heart sound signal selection based on the cyclostationarity property. Computers in biology and medicine. 2013, 43, 607-612.
[52] H. Tang; J. Gao; C. Ruan; T. Qiu, Y. Park. Modeling of heart sound morphology and analysis of the morphological variations induced by respiration. Computers in Biology and Medicine, 2013,43(11):1637-1644.
[53] H. Tang, T. Li, T. Qiu. Cardiac cycle detection for heart sound signal based on instantaneous cycle frequency. 2011 4th international conference on biomedical engineering and informatics, Shanghai, China, Oct 15-17,674-677.