《微分幾何基礎》是由(美國)尼爾 (Barrett O'neill)編寫,人民郵電出版社出版的一本書籍。
基本介紹
- 書名:微分幾何基礎
- 又名:Elementary Differential Geometry
- 作者:(美國)尼爾 (Barrett O'neill)
- ISBN: 9787115195371
- 頁數: 503頁
- 出版社:人民郵電出版社
- 出版時間:2009年2月1日
- 裝幀:平裝
- 開本:16
- 叢書名:圖靈原版數學·統計學第列
作者簡介,內容簡介,目錄,
作者簡介
作者:(美國)尼爾 (Barrett O'neill)
Barrett O'Neill,加州大學洛杉磯分校教授。1951年在麻省理丁學院獲得博士學位。他的研究方向包括:曲線和曲面幾何,計算機和曲面,黎曼幾何,黑洞理論等。另著有Semi-Riemannian Geometry with Applications to Relativity和The Geometry of Kerr Black Holes等書。
內容簡介
《微分幾何基礎(英文版·第2版修訂版)》介紹曲線和曲面幾何的入門知識,主要內容包括歐氏空間上的積分、幀場、歐氏幾何、曲面積分、形狀運算元、曲面幾何、黎曼幾何、曲面上的球面結構等。修訂版擴展了一些主題,更加強調拓撲性質、測地線的性質、向量場的奇異性等。更為重要的是,修訂版增加了計算機建模的內容,提供了Mathematica和Maple程式。此外,還增加了相應的計算機習題,補充了奇數號碼習題的答案,更便於教學。
《微分幾何基礎(英文版·第2版修訂版)》適合作為高等院校本科生相關課程的教材,也適合作為相關專業研究生和科研人員的參考書。
目錄
1. Calculus on Euclidean Space
1.1. Euclidean Space
1.2. Tangent Vectors
1.3. Directional Derivatives
1.4. Curves in R3
1.5. 1-Forms
1.6. Differential Forms
1.7. Mappings
1.8. Summary
2. Frame Fields
2.1. Dot Product
2.2. Curves
2.3. The Frenet Formulas
2.4. Arbitrary-speed Curves
2.5. Covariant Derivatives
2.6. Frame Fields
2.7. Connection Forms
2.8. The Structural Equations
2.9. Summary
3. Euclidean Geometry
3.1. Isometries of R3
3.2. The Tangent Map of an Isometry
3.3. Orientation
3.4. Euclidean Geometry
3.5. Congruence of Curves
3.6. Summary
4. Calculus on a Surface
4.1. Surfaces in R3
4.2. Patch Computations
4.3. Differentiable Functions and Tangent Vectors
4.4. Differential Forms on a Surface
4.5. Mappings of Surfaces
4.6. Integration of Forms
4.7. Topological Properties of Surfaces
4.8. Manifolds
4.9. Summary
5. Shape Operators
5.1. The Shape Operator of M c R3
5.2. Normal Curvature
5.3. Gaussian Curvature
5.4. Computational Techniques
5.5. The Implicit Case
5.6. Special Curves in a Surface
5.7. Surfaces of Revolution
5.8. Summary
6. Geometry of Surfaces in R
6.1. The Fundamental Equations
6.2. Form Computations
6.3. Some Global Theorems
6.4. Isometries and Local Isometries
6.5. Intrinsic Geometry of Surfaces in R3
6.6. Orthogonal Coordinates
6.7. Integration and Orientation
6.8. Total Curvature
6.9. Congruence of Surfaces
6.10. Summary
7. Riemannian Geometry
7.1. Geometric Surfaces
7.2. Gaussian Curvature
7.3. Covariant Derivative
7.4. Geodesics
7.5. Clairaut Parametrizations
7.6. The Gauss-Bonnet Theorem
7.7. Applications of Gauss-Bonnet
7.8. Summary
8. Global Structure of Surfaces
8.1. Length-Minimizing Properties of Geodesics
8.2. Complete Surfaces
8.3. Curvature and Conjugate Points
8.4. Covering Surfaces
8.5. Mappings That Preserve Inner Products
8.6. Surfaces of Constant Curvature
8.7. Theorems of Bonnet and Hadamard
8.8. Summary
Appendix: Computer Formulas
Bibliography
Answers to Odd-Numbered Exercises
Index