張端智 男 南開大學數學科學學院教授, 博士生導師 。
基本介紹
- 中文名:張端智
- 國籍:中國
- 職業:教師
- 研究方向:非線性分析與辛幾何
- 職稱:教授
人物經歷,研究方向,主要貢獻,
人物經歷
南開大學數學科學學院教授,博士生導師
研究方向
研究方向:非線性分析與辛幾何。
主要貢獻
[1] Chungen Liu andDuanzhi Zhang, Seifert conjecture in the even convex case.Comm. Pure Appl. Math.(to appear)
[2]Duanzhi Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems.DiscreteContin.Dyn.Syst. (to appear)
[3]Chungen LiuandDuanzhi Zhang, Iteration theory of L-index and multiplicity of brake orbits.J. Differential Equations257 (2014), no. 4, 1194–1245.
[4]Duanzhi Zhangand Chungen Liu, Multiple brake orbits on compact convex symmetric reversible hypersurfaces in R2n.Ann. Inst. H. Poincaré Anal. Non Linéaire31 (2014), no. 3, 531–554.[5] Yijing Sun and Duanzhi, Zhang,The role of the power 3 for elliptic equations with negative exponents.Calc. Var. Partial Differential Equations49 (2014), no. 3-4, 909–922.
[6]DuanzhiZhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems.Sci. China Math.57(2014),no. 1,81–96.
[7]Duanzhi Zhangand Chungen Liu, Multiplicity of brake orbits on compact convex symmetric reversible hypersurfaces in R2n for n≥ 4.Proc. London Math. Soc.(3)107(2013)1-38.
[8] Duanzhi Zhang, $P$ -cyclic symmetric closed characteristics on compact convex $P$ -cyclic symmetric hypersurface in $\bold R^{2n}$ .Discrete Contin. Dyn. Syst.33 (2013), no. 2, 947–964.
[9]Duanzhi Zhang, Brake type closed characteristics on reversible compact convex hypersurfaces in $\bold R^{2n}$R2n. Nonlinear Anal.74 (2011), no. 10, 3149–3158.
[10]Duanzhi Zhangand Chungen Liu, Brake orbits in bounded convex symmetric domains. Progress in variational methods, 71–89,Nankai Ser. Pure Appl. Math. Theoret. Phys.,7, World Sci. Publ., Hackensack, NJ, 2011.
[11]Duanzhi Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries.J. Differential Equations245(2008),no. 4,925–938.
[12]Duanzhi Zhang, Maslov-type index and brake orbits in nonlinear Hamiltonian systems.Sci. China Ser. A50(2007),no. 6,761–772.
[13]Duanzhi Zhang, Multiple symmetric brake orbits in bounded convex symmetric domains.Adv. Nonlinear Stud.6(2006),no. 4,643–652.
[14] Yiming Long,Duanzhi Zhangand Chaofeng Zhu, Multiple brake orbits in bounded convex symmetric domains.Adv. Math.203(2006),no. 2,568–635.
[15]Duanzhi Zhang, Multiple brake orbits on convex hypersurfaces under asymmetric pinch conditions.Nonlinear Anal.61(2005),no. 6,919–929.