弧連通集(arcwise connected set)亦稱路徑連通集,可用弧連結其中任意兩點的點集,對於平麵點集情形指它是這樣的:若E⊂R2,若對於E中任意的兩點(a,x)和(b,y),存在區間[a,b]上的連續單調函式f,使得f(a)=x,f(b)=y,則稱E為弧連通集。弧連通集必是連通的,反之不一定,例如,平面曲線y=sin(1/x),(0<x≤1),與x軸上的線段-1≤x≤0的並集是連通的,但不是弧連通的。在Rn中,連通的開集是弧連通的。Rn的凸子集總是弧連通的,因而是連通的。當所用的弧是折線,即有限條線段的並集時,弧連通集稱為折線連通集。在Rn中,連通開集是折線連通的。n維球、n維區間、n維球面都是弧連通的。
基本介紹
- 中文名:弧連通集
- 外文名:arcwise connected set
- 別稱:路徑連通集
- 所屬學科:數學
- 所屬問題:數學分析(實數理論)
定義介紹,相關定理,弧連通空間,
定義介紹
![](/img/c/530/0b9c67e9e673c70e0540a7f8f052.jpg)
相關定理
弧連通與連通之間有以下關係:
定理1弧連通集是連通的。
上述定理的逆命題是不成立的,如下面例題所示。
例1考察平面
上的子集:
![](/img/4/76b/b48922f70cac1a05976f5b605146.jpg)
![](/img/9/9e3/c7053d0559a2c74436e81d9328f2.jpg)
![](/img/8/36f/9d68379b901c0442850c3d8b4be1.jpg)
![](/img/c/79f/eaa2d27ceec85dd44c10d6882ea8.jpg)
![](/img/8/979/b818d48fa0a2d9f89350508d7048.jpg)
![](/img/1/c36/4f591b0f1d6925514e1f26ce2b4b.jpg)
![](/img/c/37a/bff0c23130aeb8bce56587723355.jpg)
![](/img/a/fbb/7b72927bb6bfa1732963851ed44d.jpg)
![](/img/e/6de/3d96bc20c7ffc4656ea1fc55afc9.jpg)
![](/img/e/6de/3d96bc20c7ffc4656ea1fc55afc9.jpg)
![圖1 圖1](/img/9/8ac/nBnauQmM0YGNmJ2N4AjMwI2NxAjZ1QGZ4EDZzgDMjRTMwkTY5kDOiRjM4U2LtVGdp9yYpB3LltWahJ2Lt92YuUHZpFmYuMmczdWbp9yL6MHc0RHa.jpg)
平面
上的拓撲學是單變數複函數論的一個重要部分。在複函數論中,把平面上的開連通集稱為一個區域(region),下面的定理在複函數論中是重要的。
![](/img/c/77e/8c2396201ebad32604dd00d83633.jpg)
定理2平面
上的開連通集是弧連通的。
![](/img/1/dd7/e87b2609d99004f09b317e6cbeae.jpg)
弧連通空間
若拓撲空間上任意兩點可由其上的弧連線(即此弧分別以這兩點為起點和終點),則稱此空間為弧連通的,若空間有一由弧連通集組成的基,則稱為局部弧連通空間。
局部弧連通空間
是弧連通的若且唯若
是連通的。
![](/img/c/15a/ba4ba6ea13e8d2230d77ab6873b5.jpg)
![](/img/4/f94/98d495d653779a548c8cdd44b71c.jpg)
![](/img/e/d1d/102e2f8cdc37da7731f12ac4ff0e.jpg)