基本介紹
- 中文名:庫默爾判別法
- 外文名:Kummer's discriminant method
- 所屬學科:數學
- 別名:迪尼-庫默爾判別法
- 提出者:庫默爾(Kummer)
- 簡介:正項級數收斂性判別法之一
基本介紹,庫默爾判別法的極限形式,
基本介紹
關於正項級數
(ak≥0)的收斂法則,德國數學家庫默爾(Kummer)在1835年給出了一個判別法,且是充要條件。
![](/img/c/a82/wZ2NnL4kTN4UmZjJTOmN2N0ITZlVTMxkjYhVjYjFDMwQWY5AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
庫默爾判別法
(1)設正項級數
收斂,若且唯若存在正項級數
及實數c>0,使得
![](/img/c/a82/wZ2NnL4kTN4UmZjJTOmN2N0ITZlVTMxkjYhVjYjFDMwQWY5AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/558/wZ2NnL5AjYlRGM1MmN1QDNiZDMjFGZmJWO3czY3Y2Y2MDNiZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/0/a5c/wZ2NnLzYjNiZ2Y5AjY0IWYmJjZkRGNjFmZmVGZxM2YiZmMwQ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
(2)設正項級數
發散,若且唯若存在正項級數
使得
發散,且
![](/img/c/a82/wZ2NnL4kTN4UmZjJTOmN2N0ITZlVTMxkjYhVjYjFDMwQWY5AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/65c/wZ2NnL2kzY0gzM1E2N5YTMhVGMhZ2N2YTOiJTMhJWZhJWN1czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/ad1/wZ2NnL0QDN1MmN4QWN1ITZmV2YzITNhJmN1IGNmNzNwUDZ5UzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/6/da7/wZ2NnL2YTO5IDO5U2MhJWN3M2MzkjZkNjNzU2YxMmN3U2YmVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
庫默爾判別法的極限形式
庫默爾判別法的極限形式:
(1)若
(ak>0)收斂,若且唯若
,這裡Pn>o,且
![](/img/c/a82/wZ2NnL4kTN4UmZjJTOmN2N0ITZlVTMxkjYhVjYjFDMwQWY5AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/80f/wZ2NnL2IWZ2gTM4UGN3cTMzEzMkRGM0Q2MjRTMhZDMjZjY1M2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/4/45f/wZ2NnL5cTZiFjZxEzNhFTZ4kDM0kTMjRzNkBzMwYzN4ImMhFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)