常微分方程運動穩定性理論

動力系統的運動穩定性的理論,是由俄國數學家李亞普諾夫於19世紀90年代所開創它是研究擾動性因素對運動系統的影響。

基本介紹

  • 中文名:常微分方程運動穩定性理論
  • 類型:知識
  • 作用:擾動性因素
  • 理論套用:運動穩定性理論
基本信息,理論套用,

基本信息

擾動性因素,可以是瞬間的作用,引起系統的初始狀態的變化;也可以是持續地起作用,而引起系統本身的變化。通常著重考慮的是前者。微小的擾動對於不同的系統運動的影響是不一樣的。對有些運動,影響不顯著,受擾動的運動與未受擾動的運動相差很小。而對有些運動,擾動的影響可能很顯著,以致無論擾動如何小,受擾動的運動與未受擾動的運動隨時間的推移可能相差很大。簡略地說,屬於前者的運動是穩定的,屬於後一類型的運動是不穩定的。運動穩定性理論就是要建立一些準則,用來判斷所考慮的運動是穩定的或不穩定的。

理論套用

李亞普諾夫創立的運動穩定性理論,不僅在力學、控制、工程及星際航行等科學尖端技術領域有其廣泛深刻的套用,而且在現代物理、生物、化學等自然科學中得到了進一步的發展,同時它亦逐漸發展成為常微分方程學科本身許多課題理論研究的有力工具。李亞普諾夫穩定性理論中的一個核心問題,就是李亞普諾夫函式的構造問題。30多年來人們作了不少的努力,但對於一般非線性系統,還沒有得到通用而有效的構造方法。雖然如此,針對實際問題中出現的各種非線性系統,通過定性分析並根據實際情況進行具體分析,從而構造出恰當的李亞普諾夫函式,還是取得了豐富的成果。

相關詞條

熱門詞條

聯絡我們