基本介紹
- 中文名:孫旭平
- 國籍:中國
- 職業:教授
- 畢業院校:西華師範大學
- 主要成就:獲2004年中科院院長獎學金優秀獎
- 代表作品:《納米材料的濕化學合成及新穎結構的自組裝構建》
- 性別:男
教育及工作經歷,人物生平,主要工作業績,榮譽成就,代表性論文,
教育及工作經歷
1993.09–1997.07,西華師範大學,化學教育(學士)
2000.09–2005.12,中科院長春應化所,分析化學(博士)
1997.07–2004.10,西華師範大學化學化工學院,助教
2006.04–2007.05,德國Konstanz University化學系,博士後(洪堡學者)
2007.06–2008.05,加拿大Toronto University藥理系,博士後
2008.06–2009.07,美國Purdue University化學系,博士後
2010.01–2015.09,中科院長春應化所電分析化學國家重點實驗室,研究員,博導
2011.11–,沙特King Abdulaziz University化學系,兼職教授
2015.10–,四川大學化學學院,教授
學術任職
Journal of Nanomaterials, American Journal of Nanotechnology, AmericanJournal ofAnalyticalChemistry,Biochemistry and Analytical Biochemistry等雜誌編委
人物生平
在攻讀博士學位期間,孫旭平博士在納米材料的濕化學合成及新穎結構的自組裝構建方面開展了一系列研究工作,取得了一系列富有創新性的研究成果,並引起了國際同行的關注,如:首次提出了一步加熱法製備尺寸可控的樹枝狀化合物保護的金納米粒子,該工作在Macromol. Rapid Commun.發表後,受到了美國化學會電子雜誌Heart Cut高度評價;首次發展了一種無表面活性劑的、無模板的、大規模製備導電聚合物聚鄰苯胺納米帶的新方法,該成果在Chem. Commun.發表後,還被該雜誌主編作為熱點文章推介給讀者,同時還受到了國際雜誌Chem. Sci.和Materialstoday的高度評價。已經在Angew. Chem., J. Am. Chem. Soc., Anal. Chem., Chem. Mater., Macromolecules, Chem. Commun., Langmuir, Macromol. Rapid. Commun.等國際權威雜誌發表研究論文42篇,並獲一項美國專利和兩項中國專利。主持四川青年基金一項。
主要工作業績
榮譽及獲獎情況
中科院院長優秀獎(2004)
中科院優秀博士學位論文(2007)
全國百篇優秀博士學位論文(2008)
吉林省高層次創新創業人才(2010)
長春市首批青年科技英才(2012)
主要學術貢獻
率先採用低溫磷化反應實現了無表面活性劑過渡金屬磷化物的快速可控制備,發展三維過渡金屬磷化物陣列電極,成功用於高效電催化還原H+析氫,並分析探討了催化機理;提出基於過渡金屬磷化物的電化學pH感測新技術,創新性地利用過渡金屬磷化物的H+還原催化特性加速光導電子轉移,發展CoP納米線新型螢光淬滅劑,實現了快速、高效DNA檢測;構建了基於富共軛π電子納米結構的DNA螢光感測界面,首次以生物質為原料合成了雜原子摻雜螢光碳點,利用表面氮原子對Cu2+的富集能力,發展了基於氮摻雜碳點的螢光Cu2+感測新策略。已在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Nucleic Acids Res.、Chem. Mater.、ACS Catal.、ChemSusChem、Anal. Chem.等刊物發表研究論文200餘篇,22篇論文入選ESI資料庫高被引論文,5篇論文入選ESI資料庫熱點論文,論文他引6000餘次,H-index 48。
榮譽成就
孫旭平博士獲2004年中科院院長獎學金優秀獎,獲2007年中科院優秀博士學位論文,並獲2008年全國百篇優秀博士學位論文(論文題目為:《納米材料的濕化學合成及新穎結構的自組裝構建》);於2004年破格晉升為副教授,並於2006年破格晉升為教授;2006年4月~2007年5月,在德國洪堡獎學金資助下,作為洪堡學者在德國Konstanz大學化學系從事博士後研究工作,研究方向為金屬和導電聚合物納米材料的合成、表征及性能研究;2007年6月~2008年5月,在加拿大Toronto大學藥理系從事博士後研究工作,主要研究方向為新型DNA檢測晶片的研製及其在DNA檢測中的套用;2008年6月~2009年6月,在美國Purdue大學化學系從事博士後研究工作,研究方向為自組裝DNA納米結構的加工及其在生物醫學中的套用;現為美國化學會(ACS)、英國皇家化學會(RSC)、荷蘭Elsevier和德國Wiley等出版公司發行期刊的特約審稿人。
孫旭平博士的主要研究領域包括電分析化學、(納米)材料化學、高分子化學、超分子自組裝、DNA檢測及DNA分子納米技術及其交叉領域;正建立納米生物實驗室,並組建研究小組,歡迎有志從事科學研究並對上述研究領域感興趣的同學加入本研究團隊,在孫旭平博士的帶領下,立足國際前沿,在重大疾病、傳染病及遺傳病的早期電化學診斷與檢測及新型納米生物探針和納米藥物載體的研製等方面開展創新性研究工作。
代表性論文
1.Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X.* Recent progress in Co-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2015, DOI: 10.1002/adma.201502696.
2.Tian, J.; Cheng, N.; Xing, W.; Sun, X.* Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. Int. Ed. 2015, 54, 5493-5497.
3.Tang, C.; Chen, N.; Pu, Z.; Xing, W.; Sun, X.* NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed.2015, 54, 9351-9355.
4.Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X.* Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0−14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
5.Liu, Q.; Tian, J.; Asiri, A. M.; Sun, X.* Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53, 6710-6714.
6.Tian, J.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Self-supported Cu3P nanowires array as an integrated high-performance 3D cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 2014, 53, 9577-9581.
7.Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A. M.; Sun, X.* A cost-effective 3D hydrogen evolution cathode with exceptionally high catalytic activity: FeP nanowires array as the active phase. Angew. Chem. Int. Ed. 2014,53,12855-12859.
8.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702-5707.
9.Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Hydrothermal treatment of grass: a low cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots that can be used as an effective fluorescent sensing platform for label-free sensitive and selective detection of Cu(II) ions. Adv. Mater. 2012, 24, 2307-2310.
10.Wang, L.; Zhang, Y.; Tian, J.; Li, H.; Sun, X.* Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Nucleic Acids Res. 2011, 39, e37-e42.
11.Sun, X.; Ko, S. H.; Zhang, C.; Ribbe, A. E.; Mao, C.* Surface-mediated DNA self-assembly. J. Am. Chem. Soc.2009, 131, 13248-13249.
12.10. Sun, X.; Dong, S.*; Wang, E.* Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. J. Am. Chem. Soc.2005,127, 13102-13103.
13.11. Sun, X.; Dong, S.*; Wang, E.* Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed.2004,43, 6360-6363.
14.Tian, J.; Li, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.
15.Lu, W.; Qin, X.; Liu, S.; Chang, G.; Zhang, Y.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for rapid, sensitive, and selective detection of mercury(II) ions. Anal. Chem. 2012, 84, 5351-5357.
16.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Luminescent supramolecular microstructures containing Ru(bpy)32+: solution-based self-assembly preparation and solid-state electrochemiluminescence detection application. Anal. Chem. 2007, 79, 2588-2592.
17.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Pt nanoparticles: heat-treatment-based preparation and Ru(bpy)32+-mediated formation of aggregates that can form stable film on bare solid electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 2006, 78, 6674-6677.
18.Sun, X.; Du, Y.; Zhang, L.; Dong, S.*; Wang, E.* Method for effective immobilization of Ru(bpy)32+ on electrode surface toward solid-state electrochemiluminescene detection. Anal. Chem. 2005, 77, 8166-8169.
19.Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X.* High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5, 145-149.
20.Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.*; Luo, Y.* Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065-4069.
21.Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A. M.; Sun, X.* Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014, 4, 2658-2661.
22.Tian, J.; Li, H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Photo-assisted preparation of Cobalt Phosphate/graphene oxide composites: a novel oxygen-evolving catalyst with high efficiency. Small 2013, 9, 2709-2714.
23.Li, H.; Zhang, Y.; Luo, Y.; Sun, X.* Nano-C60: a novel, effective fluorescent sensing platform for biomolecular detection. Small 2011, 7, 1562-1568.
24.Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X.* CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 2014, 26, 4326-4329.
25.Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* Interconnected Co-entrapped, N-doped carbon nanotube film as active hydrogen evolution cathode over the whole pH range.ChemSusChem 2015, 8, 1850-1855.
26.Li, Q.; Cui, W.; Tian, J.; Xing, Z.; Liu, Q.; Xing, W.; Asiri, A. M.; Sun, X.* N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution. ChemSusChem 2015, 15, 2487-2491.
27.Tian, J.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X.* Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 2014, 7, 2125-2130.
28.Pu, Z.; Liu, Q.; Tang, C.; Asiri, A. M.; Sun, X.* Ni2P nanoparticle films supported on a Ti plate asan efficient hydrogen evolution cathode. Nanoscale2014, 6, 11031-11034.
29.Xing, Z.; Tian, J.; Liu, Q.; Asiri, A. M.; Jiang, P.; Sun, X.* Holey graphene nanosheets: large-scale rapid preparation and their application toward high-effective water cleaning. Nanoscale 2014, 6, 11659-11663.
30.Jiang, P.; Liu, Q.; Sun, X.* NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale2014, 6, 13440-13445 (selected as a Hot Article by Editor's choice).
31.Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921-8924.
32.Tian, J.; Liu, Q.;Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.*Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604-11609.
33.Li, H.; Zhai, J.; Sun, X.* Nano-C60 as a novel, effective fluorescent sensing platform for mercury(II) ion detection at critical sensitivity and selectivity. Nanoscale 2011, 3, 2155-2157.
34.Liu, S.; Wang, L.; Luo, Y.; Tian, J.; Li, H.; Sun, X.* Polyaniline nanofibres for fluorescent nucleic acid detection. Nanoscale 2011, 3, 967-969.
35.Cheng, N.; Liu, Q.; Tian, J.; Xue, Y.; Asiri, A. M.; Jiang, H.; He, Y.*; Sun, X.* Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 2015, 51, 1616-1619.
36.Cui, W.; Liu, Q.; Cheng, N.; Asiri, A. M.; Sun, X.* Activated carbon nanotubes: a high-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2014, 50, 9340-9342.
37.Li, H.; Tian, J.; Wang, L.; Zhang, Y.; Sun, X.* Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun. 2011, 47, 961-963.
38.Li, H.; Sun, X.* Fluorescence-enhanced nucleic acid detection: using coordination polymer colloids as a sensing platform. Chem. Commun. 2011, 47, 2625-2627.
39.Zhang, Y.; Sun, X.* A novel fluorescent aptasensor for thrombin detection: using poly(m-phenylenediamine) rods as an effective sensing platform. Chem. Commun. 2011, 47, 3927-3929.
40.Lu, W.; Liu, S.; Qin, X.; Wang, L.; Tian, J.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X.* High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 2012, 2, 8775-8777. (top 10 accessed articles)
41.Tian, J.; Liu, Q.; Shi, J.; Hu, J.; Asiri, A. M.; Sun, X.*; He, Y.* Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: synergies of the metal center and organic linker. Biosens. Bioelectron. 2015, 71, 1-6.
42.Xing, Z.; Tian, J.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X.* Two-dimensional hybrid mesoporous Fe2O3-graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens. Bioelectron. 2014, 52, 452-457.
43.Liu, S.; Tian, J.; Wang, L.; Luo, Y.; Lu, W.; Sun, X.* Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 2011, 26, 4491-4496.
44.Zhang, Y.; Liu, S.; Sun, X.* Mesoporous carbon microparticles as a novel fluorescent sensing platform for thrombin detection. Biosens. Bioelectron. 2011, 26, 3876-3880.
45.Li, H.; Zhai, J.; Tian, J.; Luo, Y.; Sun, X.* Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens. Bioelectron. 2011, 26, 4656-4660.
46.Lu, W.; Luo, Y.; Chang, G.; Sun, X.* Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens. Bioelectron. 2011, 26, 4791-4797. (most read articles)
47.Li, H.; Sun, X.* Fluorescence resonance energy transfer dye-labeled probe for fluorescence-enhanced DNA detection: an effective strategy to greatly improve discrimination ability toward single-base mismatch. Biosens. Bioelectron. 2011, 27, 167-171.
48.Zhang, Y.; Chang, G.; Liu, S.; Lu, W.; Tian, J.; Sun, X.* Green preparation of Au nanoplates and their application for glucose sensing. Biosens. Bioelectron. 2011, 28, 344-348.
49.Liu, S.; Tian, J.; Wang, L.; Sun, X.* A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 2011, 49, 3158-3164.
50.Liu, S.; Tian, J.; Wang, L.; Li, H.;Zhang, Y.; Sun, X.* Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 2010, 43, 10078-10083.