失蹤的正方形

失蹤的正方形

失蹤的正方形謎題是一種用於數學課的視覺錯覺,有助於學生對幾何圖形的思考。它描述了四個幾何圖形的兩種不同組合,都是13乘5的三角形,不過第二種拼法少了一個1×1的正方形

基本介紹

  • 中文名:失蹤的正方形
  • 別稱:消失的正方形
  • 提出者馬丁·加德納
  • 提出時間:1953年
  • 套用學科:理科  數學
  • 適用領域範圍教學
解析,套用,

解析

這謎題的關鍵是實際上,這不是兩個三角形,而是兩個凹四邊形。目測不容易察覺到紅色和藍色三角形斜邊斜率有差別。 因此誤以為兩個組合成的圖形都是三角形。(也就是說:紅色三角形與藍色三角形的斜邊並不在同一直線上)
四個圖形(黃色、紅色、藍色和綠色圖形)總共占32個單位面積,但是外面總三角形是寬13高5,合計32.5單位。藍色三角形長寬比為5:2,紅色三角則是8:3,並且這些不是同一個長寬比。因此在每個圖中外觀上加成後的斜邊實際上縮短了。
總共縮短的長度大約是一單位的28分之一,這在此謎題示例圖上很難以看出。注意在藍色紅色斜邊交界處的格線點,如果將它與另一張圖的對應交界點比較,邊緣稍稍溢出或者低于格點。來自兩張圖重疊後溢出的斜邊導致一個非常細微的平行四邊形,占據了剛好一格大小的面積,恰恰是第二張圖“消失”的區域。
根據美國業餘數學大師馬丁·加德納指出,本謎題是在1953年是由紐約市業餘魔術師保羅·嘉理(Paul Curry)發明的。不過裁切悖論的原理自從1860年代就已為數學家所知了。
失蹤的正方形
謎題里描述組成圖形的整數域(2, 3, 5, 8, 13)是連續的斐波那契數。 許多其他幾何裁切謎題皆根據著名斐波那契數列的許多簡單的特質。這正是斜率誤差
失蹤的正方形

套用

本謎題另類且較簡單的版本(在動畫裡顯示)使用四個相等的四邊形以及一個小正方形,則組成一個較大的正方形。當四邊形繞著其中心旋轉,中間的小正方形將被填滿,即使該圖的總面積看起來沒有變動。這外表上的悖論可由新形成的方形四邊較原來的小了一點。

相關詞條

熱門詞條

聯絡我們