大數據架構詳解:從數據獲取到深度學習

大數據架構詳解:從數據獲取到深度學習

《大數據架構詳解:從數據獲取到深度學習》是2016年電子工業出版社出版的圖書,作者是朱潔、羅華霖。

基本介紹

  • 書名:大數據架構詳解:從數據獲取到深度學習
  • 作者:朱潔、羅華霖
  • 出版社:電子工業出版社
  • 出版時間:2016年10月
  • 頁數:372 頁
  • 定價:69 元 
  • 開本:16 開
  • ISBN:9787121300004
內容簡介,作者簡介,圖書目錄,

內容簡介

本書從架構、業務、技術三個維度深入淺出地介紹了大數據處理領域端到端的知識。主要內容包括三部分:第一部分從數據的產生、採集、計算、存儲、消費端到端的角度介紹大數據技術的起源、發展、關鍵技術點和未來趨勢,結合生動的業界最新產品,以及學術界最新的研究方向和成果,讓深奧的技術淺顯易懂;第二部分從業務和技術角度介紹實際案例,讓讀者理解大數據的用途及技術的本質;第三部分介紹大數據技術不是孤立的,講解如何與前沿的雲技術、深度學習、機器學習等相結合。

作者簡介

朱潔,大數據規劃師。__eol__2008年至今,一直在華為技術有限公司公司從事大數據相關架構設計,技術規劃等工作。

圖書目錄

第一部分 大數據的本質
第1章 大數據是什麼 2
1.1 大數據導論 2
1.1.1 大數據簡史 2
1.1.2 大數據現狀 3
1.1.3 大數據與BI 3
1.2 企業數據資產 4
1.3 大數據挑戰 5
1.3.1 成本挑戰 6
1.3.2 實時性挑戰 6
1.3.3 安全挑戰 6
1.4 小結 6
第2章 運營商大數據架構 7
2.1 架構驅動的因素 7
2.2 大數據平台架構 7
2.3 平台發展趨勢 8
2.4 小結 8
第3章 運營商大數據業務 9
3.1 運營商常見的大數據業務 9
3.1.1 SQM(運維質量管理) 9
3.1.2 CSE(客戶體驗提升) 9
3.1.3 MSS(市場運維支撐) 10
3.1.4 DMP(數據管理平台) 10
3.2 小結 11
第二部分 大數據技術
第4章 數據獲取 14
4.1 數據分類 14
4.2 數據獲取組件 14
4.3 探針 15
4.3.1 探針原理 15
4.3.2 探針的關鍵能力 16
4.4 網頁採集 26
4.4.1 網路爬蟲 26
4.4.2 簡單爬蟲Python代碼示例 32
4.5 日誌收集 33
4.5.1 Flume 33
4.5.2 其他日誌收集組件 47
4.6 數據分發中間件 47
4.6.1 數據分發中間件的作用 47
4.6.2 Kafka架構和原理 47
4.7 小結 82
第5章 流處理 83
5.1 運算元 83
5.2 流的概念 83
5.3 流的套用場景 84
5.3.1 金融領域 84
5.3.2 電信領域 85
5.4 業界兩種典型的流引擎 85
5.4.1 Storm 85
5.4.2 Spark Streaming 89
5.4.3 融合框架 102
5.5 CEP 108
5.5.1 CEP是什麼 108
5.5.2 CEP的架構 109
5.5.3 Esper 110
5.6 實時結合機器學習 110
5.6.1 Eagle的特點 111
5.6.2 Eagle概覽 111
5.7 小結 116
第6章 互動式分析 117
6.1 互動式分析的概念 117
6.2 MPP DB技術 118
6.2.1 MPP的概念 118
6.2.2 典型的MPP資料庫 121
6.2.3 MPP DB調優實戰 131
6.2.4 MPP DB適用場景 162
6.3 SQL on Hadoop 163
6.3.1 Hive 163
6.3.2 Phoenix 165
6.3.3 Impala 166
6.4 大數據倉庫 167
6.4.1 數據倉庫的概念 167
6.4.2 OLTP/OLAP對比 168
6.4.3 大數據場景下的同與不同 168
6.4.4 查詢引擎 169
6.4.5 存儲引擎 170
6.5 小結 171
第7章 批處理技術 172
7.1 批處理技術的概念 172
7.2 MPP DB技術 172
7.3 MapReduce編程框架 173
7.3.1 MapReduce起源 173
7.3.2 MapReduce原理 173
7.3.3 Shuffle 174
7.3.4 性能差的主要原因 177
7.4 Spark架構和原理 177
7.4.1 Spark的起源和特點 177
7.4.2 Spark的核心概念 178
7.5 BSP框架 217
7.5.1 什麼是BSP模型 217
7.5.2 並行模型介紹 218
7.5.3 BSP模型基本原理 220
7.5.4 BSP模型的特點 222
7.5.5 BSP模型的評價 222
7.5.6 BSP與MapReduce對比 222
7.5.7 BSP模型的實現 223
7.5.8 Apache Hama簡介 223
7.6 批處理關鍵技術 227
7.6.1 CodeGen 227
7.6.2 CPU親和技術 228
7.7 小結 229
第8章 機器學習和數據挖掘 230
8.1 機器學習和數據挖掘的聯繫與區別 230
8.2 典型的數據挖掘和機器學習過程 231
8.3 機器學習概覽 232
8.3.1 學習方式 232
8.3.2 算法類似性 233
8.4 機器學習&數據挖掘套用案例 235
8.4.1 尿布和啤酒的故事 235
8.4.2 決策樹用於電信領域故障快速定位 236
8.4.3 圖像識別領域 236
8.4.4 自然語言識別 238
8.5 互動式分析 239
8.6 深度學習 240
8.6.1 深度學習概述 240
8.6.2 機器學習的背景 241
8.6.3 人腦視覺機理 242
8.6.4 關於特徵 244
8.6.5 需要有多少個特徵 245
8.6.6 深度學習的基本思想 246
8.6.7 淺層學習和深度學習 246
8.6.8 深度學習與神經網路 247
8.6.9 深度學習的訓練過程 248
8.6.10 深度學習的框架 248
8.6.11 深度學習與GPU 255
8.6.12 深度學習小結與展望 256
8.7 小結 257
第9章 資源管理 258
9.1 資源管理的基本概念 258
9.1.1 資源調度的目標和價值 258
9.1.2 資源調度的使用限制及難點 258
9.2 Hadoop領域的資源調度框架 259
9.2.1 YARN 259
9.2.2 Borg 260
9.2.3 Omega 262
9.2.4 本節小結 263
9.3 資源分配算法 263
9.3.1 算法的作用 263
9.3.2 幾種調度算法分析 263
9.4 數據中心統一資源調度 271
9.4.1 Mesos+Marathon架構和原理 271
9.4.2 Mesos+Marathon小結 283
9.5.1 多租戶概念 284
9.5.2 多租戶方案 284
9.6 基於套用描述的智慧型調度 287
9.7 Apache Mesos架構和原理 288
9.7.1 Apache Mesos背景 288
9.7.2 Apache Mesos總體架構 288
9.7.3 Apache Mesos工作原理 290
9.7.4 Apache Mesos關鍵技術 295
9.7.5 Mesos與YARN比較 304
9.8 小結 305
第10章 存儲是基礎 306
10.1 分久必合,合久必分 306
10.2 存儲硬體的發展 306
10.2.1 機械硬碟的工作原理 306
10.2.2 SSD的原理 307
10.2.3 3DXPoint 309
10.2.4 硬體發展小結 309
10.3 存儲關鍵指標 309
10.4 RAID技術 309
10.5 存儲接口 310
10.5.1 檔案接口 311
10.5.2 裸設備 311
10.5.3 對象接口 312
10.5.4 塊接口 316
10.5.5 融合是趨勢 328
10.6 存儲加速技術 328
10.6.1 數據組織技術 328
10.6.2 快取技術 335
10.7 小結 336
第11章 大數據云化 337
11.1 雲計算定義 337
11.2 套用上雲 337
11.2.1 Cloud Native概念 338
11.2.2 微服務架構 338
11.2.3 Docker配合微服務架構 342
11.2.4 套用上雲小結 348
11.3 大數據上雲 348
11.3.1 大數據云服務的兩種模式 348
11.3.2 集群模式AWSEMR 349
11.3.3 服務模式Azure Data Lake Analytics 352
11.4 小結 354
第三部分 大數據文化
第12章 大數據技術開發文化 356
12.1 開源文化 356
12.2 DevOps理念 356
12.2.1 Development和Operations的組合 357
12.2.2 對應用程式發布的影響 357
12.2.3 遇到的問題 358
12.2.4 協調人 358
12.2.5 成功的關鍵 359
12.3 速度遠比你想的重要 359
12.4 小結 361

相關詞條

熱門詞條

聯絡我們