《基於正交級數展開的多體系統混合不確定性研究》是依託華中科技大學,由吳景錸擔任項目負責人的青年科學基金項目。
基本介紹
- 中文名:基於正交級數展開的多體系統混合不確定性研究
- 項目類別:青年科學基金項目
- 項目負責人:吳景錸
- 依託單位:華中科技大學
項目摘要,結題摘要,
項目摘要
目前對多體系統的研究大多數建立在確定性假設的基礎上,然而實際的多體系統往往包含眾多不確定性因素,而且通常同時存在兩類混合的不確定性,即偶然不確定性和認知不確定性。為提高多體系統的控制精度、可靠性和穩健性,研究混合不確定因素對系統的影響十分必要。本項目將提出一種基於正交級數展開的數值分析方法,以求解含混合不確定參數的多體系統動力學回響。項目主要研究內容為:(1)含混合不確定參數的多體系統建模,包括不確定參數的分類描述、動力學控制方程的混合不確定性表達、混合不確定性評價指標的提取;(2)基於絕對節點坐標建模的柔性多體系統連續不確定性參數表達,及連續隨機場的離散化表達;(3)含混合不確定參數的動力學控制方程的數值求解,利用正交級數展開原理逼近系統的不確定性回響,計算多體系統的不確定性評價指標,搭建原理性實驗台架以驗證項目提出的理論和算法。
結題摘要
目前對多體系統的研究大多數建立在確定性假設的基礎上,然而實際的多體系統往往包含眾多不確定性因素,而且通常同時存在兩類混合的不確定性,即偶然不確定性和認知不確定性。為提高多體系統的控制精度、可靠性和穩健性,研究混合不確定因素對系統的影響十分必要。本項目提出一種基於正交級數展開的數值分析方法,以求解含混合不確定參數的多體系統動力學回響。項目主要研究內容為:(1)柔性多體系統和剛-柔耦合多體系統的動力學不確定性建模;(2)混合不確定性的統一建模及求解;(3)基於混合不確定性分析方法的穩健最佳化設計模型及最佳化方法。取得的研究成果包括:(1)提出了含隨機不確定參數的柔性多體系統、剛-柔耦合多體系統的建模、求解和評價方法,該方法首次將柔性多體系統和剛-柔耦合多體系統中材料不確定性定義為隨機場,相比於傳統的使用單個隨機變數來描述材料不確定性的方法更加符合實際情況;(2)提出了基於Chebyshev多項式零點的序列採樣方法,使用Chebyshev多項式零點作為採樣候選點,可有效地避免高階多項式插值帶來的Runge現象,降低了採樣成本,提升了計算效率,該方法可套用構建複雜工程問題的代理模型,在工程最佳化設計中極大地提升最佳化效率;(3)提出了PCCI混合不確定性分析方法及基於PCCI的穩健最佳化設計方法,並推導了穩健最佳化設計模型中目標函式和約束函式的導數,提升了模型的最佳化效率,並將該方法套用於結構最佳化設計和拓撲最佳化設計。