人物經歷
2012年,博士,西安交通大學動力工程與工程熱物理;
2005年,學士,西安交通大學套用物理;
2020/01-至今,副教授,長安大學水環學院化工系;
2017/10-2019/12,講師,長安大學環工學院化工系;
2015/05-2016/05,博士後,美國南加州大學化學系;
2012/12-2016/12,新講師(師資博士後), 西安交通大學新能源科學與工程系。
研究方向
1.光電化學光陽極材料性質計算、光生載流子弛豫複合模擬、表面水氧化反應模擬、界面電荷轉移模擬(密度泛函理論、絕熱分子動力學、非絕熱分子動力學);
2.電催化CO2還原反應實驗和理論模擬(密度泛函理論、絕熱分子動力學)。
科研項目
1.主持陝西省自然科學基礎研究計畫一般項目(青年):氧化鐵光陽極界面電荷載流子複合動力學研究,項目編號:2019JQ-440,時間:2019/01-2020/12.
2.主持長安大學中央高校基本科研業務費基礎研究培育項目:第一性原理分子動力學研究氧化鐵光陽極水氧化界面結構,項目編號:300102298106,時間:2018/01-2019/12.
3.主持中國博士後科學基金二等面上項目:孿晶界超晶格納米線合成條件探索,項目編號:2013M542343,時間:2013/09-2015/08.
4.主持西安交通大學外協項目:CFB鍋爐爐膛水冷壁熱流密度分布計算、含鹼介質管道環焊接頭裂紋性質及成因分析,項目編號:2022610002002253、2022610002002202,時間:2021/11-2022/05.
5.主持中國石油天然氣集團公司管材研究所技術服務項目:全尺寸腐蝕機理分析,項目編號:2019610002002504,時間:2019/01-2019/12.
6.參與陝西省自然科學基礎研究計畫重點項目,表面鈍化層構建及助催化劑結構形變對光生電荷分離的促進作用研究,項目編號:2020JZ-20,時間:2020/01-2022/12,在研.
7.參與國家自然科學基金優秀國家重點實驗室研究項目:連續多相流動體系下熱物理化學、光熱物理化學基礎與規律的研究,項目編號:51323011,時間:2014/01-2017/12.
8.參與國家重點基礎研究計畫: 解聚產物催化制氫的基礎研究,項目編號:2012CB215303,時間:2012/01-2016/08.
學術論文
發表SCI論文62篇,引用2100餘次,H因子25。
2023年
[1]. Linyuan Wen, Mingtao Li, Jinwen Shi*, Yingzhe, Liu, Tao Yu, Yazhou Zhang, Maochang Liu, Zhaohui Zhou*. Non-precious metal single-atom loading and further strain engineering on SrTiO3 (100) surface for optimizing hydrogen evolution reaction. Applied Catalysis A, General 2023, 656, 119131.(IF: 5.723)
[2]. Hongliang Li, Meng Guo, Zhaohui Zhou*, Run Long*, and Wei-Hai Fang. Excitation-Wavelength-Dependent Charge-Carrier Lifetime in Hematite: An Insight from Nonadiabatic Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14, 2448–2454. (IF: 6.888)
[3]. Hua Wang, Zhaohui Zhou*, Run Long, and Oleg V. Prezhdo*. Passivation of Hematite by a Semiconducting Overlayer Reduces Charge Recombination: An Insight from Nonadiabatic Molecular Dynamics.J. Phys. Chem. Lett. 2023, 14, 879–887. (IF: 6.888)
[4]. LinyuanWen, MingtaoLi, Jinwen Shi*, TaoYu, Yingzhe Liu, Maochang Liu, Zhaohui Zhou*, LiejinGuo. Rational design of covalent heptazine framework photocatalysts with high oxidation ability through reaction-dependent strategy. Journal of Colloid and Interface Science 2023, 630 part B: 394-402. (IF: 9.965)
[5]. 王花, 周朝暉*. α-Fe2O3光陽極光電化學性能改進策略的研究進展. 套用化工, 2023, 52(05): 1542-1545.
[6]. Menglong Wang, Shuai Xu, Zhichao Ge, Yuliang Li, Zhaohui Zhou, Yubin Chen*. All-Solid-State C3N4/NixP/Red Phosphorus Z-Scheme Heterostructure for Wide-Spectrum Photocatalytic Pure Water Splitting. Ind. Eng. Chem. Res. 2023, 62, 2, 961-970. (IF: 4.2)
[7]. Rui Zhao, Shuai Xu, Dongyu Liu, Liting Wei, Suyi Yang, Xueli Yan, Yubin Chen*, Zhaohui Zhou*, Jinzhan Su, Liejin Guo, Clemens Burda*.Modulating the electronic structure of NiFe hydroxide by Zr doping enables industrial-grade current densities for water oxidation. Applied Catalysis B: Environmental, 2023, 338(5): 123027. (IF: 24.319)
[8].Fagen Li*, Qiang Wang, Guangsheng Liu, Wei Lv, Zhaohui Zhou*. Surface Science, 2023, 735: 12333. DOI: 10.1016/j.susc.2023.122333. (IF: 2.07)
[9]. Yitong Zhang, Cheng Cheng, Zhaohui Zhou, Run Long*, Wei-Hai Fang. Surface Hydroxylation during Water Splitting Promotes the Photoactivity of BiVO4(010) Surface by Suppressing Polaron-Mediated Charge Recombination. J. Phys. Chem. Lett. 2023, 14, 40, 9096-9102. (IF: 5.7)
[10] Linyuan Wen, Shiqun Shan, Weipeng Lai, Jinwen Shi, Mingtao Li, Yingzhe Liu*, Maochang Liu and Zhaohui Zhou*. Accelerating the Design of High-Energy-Density Hydrocarbon Fuels by Learning from the Data. Molecules 2023, 28, 7361. (IF: 4.6)
[11] Cheng Cheng, Zhaohui Zhou, Run Long*. Time-Domain View of Polaron Dynamics in Metal Oxide Photocatalysts. . Phys. Chem. Lett. 2023, 14, XXX, 10988–10998. (IF:5.7)
2022年
[1]. Cheng Cheng, Yonghao Zhu, Zhaohui Zhou*, Run Long*, Wei-Hai Fang. Photoinduced small electron polarons generation and recombination in hematite. Npj-computational materials 2022, 8: 148. 10.1038/s41524-022-00814-7 (IF: 12.241)
[2]. Menglong Wang, Shuai Xu, Zhaohui Zhou, Chung-Li Dong, Xu Guo, Jeng-Lung Chen, Yu-Cheng Huang, Shaohua Shen, Yubin Chen, Liejin Guo, Clemens Burda. Atomically Dispersed Janus Nickel Sites on Red Phosphorus for Photocatalytic Overall Water Splitting. Angewandte Chemie International Edition 2022, 61(29): e202204711. (IF:16.823)
[3]. Zhou Cao, Yunpu Zhao, Zhaohui Zhou, QizhaoWang, Qiong Mei*, Hongfei Cheng*. Efficiency LaFeO3 and BiOI heterojunction for the enhanced photo-Fenton degradation of tetracycline hydrochloride. Applied Surface Science 2022, 590(7):153081. (IF:7.392)
2021年
[1]. Linyuan Wen, Mingtao Li, Jinwen Shi*, Yingzhe Liu, Tao Yu, Maochang Liu, and Zhaohui Zhou*. Strain effect on oxygen evolution reaction of the SrTiO3 (0 0 1) surface. Applied Physics Letters 2021, 119: 101601. (IF: 3.791)
[2]. Fagen Li, Zhaohui Zhou*, Chaozheng He*, Yufei Li, Lin Zhang, Dajiang Zhu. H2S Dissociation on Defective or Strained Fe (110) and Subsequent Formation of Iron Sulfides: A Density Functional Theory Study. Surface Science. 2021, 709: 121835. (IF: 1.466)
[3]. Yitao Si, Mingtao Li, Zhaohui Zhou, Maochang Liu*, and Oleg Prezhdo*. Improved description of hematite surfaces by the SCAN functional. J. Chem. Phys. 2020, 152: 024706. (IF: 2.997)
2020年
[1]. Fengshuang Han, Liya Zhu*, Zhenxiong Huang, Zhaohui zhou*. Photoinduced Superhydrophilicity of Anatase TiO2 Surface Uncovered by First-Principles Molecular Dynamics. J. Phys. Chem. Lett. 2020, 11, 7590–7594. (IF: 6.710)
2019年
[1]. Z.H. Zhou, R. Long, O.V. Prezhdo*. Why Silicon Doping Accelerates Electron Polaron Diffusion in Hematite. J. Am. Chem. Soc. 2019, 141(51): 20222-20233.(IF: 14.695)
2018年
[1]. F.S. Han, Z.H. Zhou*, Z.X. Huang, M.T. Li, L.J. Guo*. Effect of Water Adsorption on Interfacial Structure and Band Edge Alignment of Anatase TiO2 (001)/Water by First-Principles Molecular Dynamics. J. Phys. Chem. C, 2018, 122 (47): 26965–26973. (IF: 4.536)
[2]. F.S. Han, Z.H. Zhou*, X.H. Zhang, Z.X. Huang, M.T. Li, L.J. Guo*. First-Principles Study on Stability and HER Activity of Noble Metal Single Atoms on TiO2: The Effect of Loading Density. J. Phys. Chem. C 2018, 122(5): 2546-2553.. (IF: 4.536)
[3]. Y.Q. Wei, Z.H. Zhou, W.H. Fang, R. Long*. Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO2 Despite Fast Charge Recombination: A Time-Domain Ab Initio Analysis. J. Phys. Chem. Lett. 2018, 9(19): 5884–5889. (IF: 9.353)
2017年
[1]. Z.H. Zhou, J. Liu, R. Long, L.Q. Li, L.J. Guo and O.V. Prezhdo*. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: ab-initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139(19): 6707-6717 (chosen for JACS Spotlight).(IF: 13.858)
[2]. J.W. Shi*, Y.Z. Zhang, Z.H. Zhou*, Y.X. Zhao, J.Y. Liu, H.B. Liu, X. Liao, Y.C. Hu, D.M. Zhao and S.H. Shen*. LaTiO2N-LaCrO3: Continuoussolid solutions towards enhanced photocatalytic H2 evolution under visible-light irradiation. Dalton Trans. 2017,46, 10685-10693. (IF: 4.029)
[3]. Y.Q. Wei, Z.H. Zhou, R. Long*, Defects Slow Down Nonradiative Electron–Hole Recombination in TiS3 Nanoribbons: A Time-Domain Ab Initio Study. J. Phys. Chem. Lett. 2017, 8: 4522-4529. (IF: 9.353)
2016年
[1]. Z.H. Zhou, F.S. Han, L.J. Guo and O.V. Prezhdo*. Understanding divergent behaviors in the photocatalytic hydrogen evolution reaction on CdS and ZnS: a DFT based study. Phys. Chem. Chem. Phys. 2016, 18(25): 16862-16869. (IF: 4.123)
[2]. Z.H. Zhou*, J.W. Shi, L.J. Guo. A comparative study on structural and electronic properties and formation energy of bulk α-Fe2O3 using first-principles calculations with different density functionals. Comput. Mater. Sci. 2016, 113: 117-122. (IF: 2.292)
[3]. J.Z. Su*, J.L Zhou, S.C. Zong, Z.H. Zhou*, C. Liu, B. Feng. Thermal annealing effect the interfacial property and photoelectrochemical performance of Ti doped Fe2O3 nanowire arrays. RSC Adv. 2016, 6: 99851-99858. (IF: 3.108)
[4]. H.P. Lu, Z.H. Zhou, Oleg V. Prezhdo,* R.L. Brutchey*. Exposing the Dynamics and Energetics of the N -Heterocyclic Carbene-Nanocrystal Interface. J. Am. Chem. Soc., 2016, 138(45): 14844-14847.(IF: 13.858)
[5]. J.W. Shi*, Y. Niu, Z.X. Huang, Z.H. Zhou, J.K. Deng, X. Liu, M.T. Li*. Novel cubic-phase pyrochlore Sb(III)2Sn(IV)2O7 transformed from Sn(II)2Sb(V)2O7: First-principles calculation-based prediction and experimental evidence. Mater. Des. 2016, 110: 207-213. (IF: 4.364)
[6]. J.W. Shi*, Y.Z. Zhang, Y.C. Hu, X.J. Guan, Z.H. Zhou, L.J. Guo*. NH3-treated MoS2 nanosheets as photocatalysts for enhanced H2 evolution under visible-light irradiation. J. Alloy. Compd. 2016, 688: 368-375. (IF: 3.133)
[7]. Y.M. Fu, C.L. Dong, Z.H. Zhou, W.Y. Lee, J. Chen, P.H. Guo, L. Zhao and S.H. Shen*. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Phys. Chem. Chem. Phys. 2016, 18: 3846. (IF: 4.123)
2015年
[1]. Z.H. Zhou, P.J. Huo, L.J. Guo, and Oleg V. Prezhdo*. Understanding Hematite Doping with Group IV Elements: A DFT+U Study. J. Phys. Chem. C 2015, 119(47): 26303-26310. (IF: 4.536)
[2]. X.X. Wang, M.C. Liu*, Z.H. Zhou, L.J. Guo*. Toward Engineering of CdS Nanocrystals and Their Shape-Dependent Photocatalytic Activities. J. Phys. Chem. C 2015, 119 (35): 20555–20560. (IF: 4.536)
[3]. B. Wang, M.C. Liu*, Z.H. Zhou, L.J. Guo*. Surface Activation of Faceted Photocatalyst: When Metal Cocatalyst Determines the Nature of the Facets. Adv. Sci., 2015, 2: 1500153. (IF: 9.034)
[4]. J.W. Shi*, X.J. Guan, Z.H. Zhou, H.P. Liu, L.J. Guo. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H-2 production under visible-light irradiation. J. Nanopart. Res., 2015, 17(6): 252. (IF: 2.020)
2014年
[1]. Z.H. Zhou*, J.W. Shi, P. Wu, L.J. Guo*. A first-principles investigation on microscopic atom distribution and configuration-averaged properties in Cd1-xZnxS solid solutions. ChemPhysChem 2014, 15(14): 3125-3132. (IF: 3.075)
[2]. Z.H. Zhou*, M.T. Li, P. Wu, L.J. Guo*. Revisiting the Zinc-Blende/Wurtzite Heterocrystalline Structure in CdS. Adv. Condens. Matter Phys. 2014, 2014: 361328. (IF: 1.044)
[3]. Z.H. Zhou*, J.W. Shi, P. Wu, L.J. Guo*. Configuration dependence of the properties of Cd1–xZnxS solid solutions by first-principles calculations. Phys. Status Solidi B 2014, 251(3): 655-660. (IF: 1.674)
[4]. N.X. Li,† M.C. Liu,† Z.H. Zhou,† J.C. Zhou, Y.M. Sun, and L.J. Guo*, Charge Separation in Facet Engineered Chalcogenide Photocatalyst: A Selective Photocorrosion Approach. Nanoscale, 2014, 6: 9695-9702. (IF: 7.367)
2013年
[1]. M.C. Liu†, D.W. Jing†, Z.H. Zhou, L.J. Guo*. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun, 2013, 4: 2278. (IF: 12.124)
[2]. H.H. Yang, X.R. Liu, Z.H. Zhou, L.J. Guo*. Preparation of a novel Cd2Ta2O7 photocatalyst and its photocatalytic activity in water splitting. Catal. Commun., 2013, 31: 71-75. (IF: 3.330)
2012年
[1]. P. Wu, Z.H. Zhou, J.W. Shi, L.J. Guo*. First-principles calculations of Cd1-xZnxS doped with alkaline earth metals for photocatalytic hydrogen generation. Int. J. Hydrogen Energy, 2012, 37(17): 13074 -13081. (IF: 3.582)
[2]. P. Wu, J.W. Shi, Z.H. Zhou, W.D. Tang, L.J. Guo*. CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. J. Hydrogen Energy, 2012, 37(18): 13704-13710. (IF: 3.582)
[3]. J.W. Shi, L.J. Ma, P. Wu, Z.H. Zhou, P.H. Guo, S.H. Shen, D.W. Jing, L.J. Guo*. A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2 evolution. Nano Res. 2012, 5(8): 576-583. (IF: 7.354)
[4]. J.W. Shi, L.J. Ma, P. Wu, Z.H. Zhou, J.G. Jiang, X.K. Wan, D.W. Jing, L.J. Guo*. Tin(II) antimonates with adjustable compositions: effects of bandgaps and nanostructures on visible-light-driven photocatalytic H2 evolution. ChemCatChem, 2012, 4(9): 1389-1396. (IF: 4.803)
[5].J.W. Shi, J.H. Ye*, Q.Y. Li, Z.H. Zhou, H. Tong, G.C. Xi, L.J. Guo*. Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: topotactic synthesis and enhanced photocatalytic activity. Chem. Eur. J. 2012, 18 (11): 3157-3162. (IF: 5.317)
2011年
[1]. Z.H. Zhou, J.W. Shi, P. Wu, M.T. Li, L.J. Guo*. First-principles study on absolute band edge positions for II-VI semiconductors at (110) surface. Chem. Phys. Lett. 2011, 513: 72-76. (IF: 1.815)
[2]. K. Zhang, Z.H. Zhou, L.J. Guo*. Alkaline earth metal as a novel dopant for chalcogenide solid solution: Improvement of photocatalytic efficiency of Cd1−xZnxS by barium surface doping. Int. J. Hydrogen Energy, 2011, 36: 9469-9478. (IF: 3.582)
[3]. G.J. Liu, Z.H. Zhou, L.J. Guo*. Correlation between band structures and photocatalytic activities of CdxCuyZn1-x-yS solid solution. Chem. Phys. Lett. 2011, 509: 43-47. (IF: 1.815)
[4]. J.W. Shi, J.H. Ye*, Z.H. Zhou, M.T. Li, L.J. Guo*. Hydrothermal Synthesis of Na0.5La0.5TiO3-LaCrO3 Solid-Solution Single-Crystal Nanocubes for Visible-Light-Driven Photocatalytic H2 Evolution. Chem. Eur. J, 2011, 17: 7858-7867. (IF: 5.317)
2010年
[1]. Z.H. Zhou, M.T. Li, L.J. Guo*. A first-principles theoretical simulation on the electronic structures and optical absorption properties for O vacancy and Ni impurity in TiO2 photocatalysts. J. Phys. Chem. Solids 2010, 71: 1707-1712. (IF: 2.059)
[2]. X.H. Zhang, Y.C. Du, Z.H. Zhou, L.J. Guo*. A simplified method for synthesis of band-structure-controlled (CuIn)xZn2(1-x)S2 solid solution photocatalysts with high activity of photocatalytic H2 evolution under visible-light irradiation. Int. J. Hydrogen Energy 2010, 35(8): 3313-3321. (IF: 3.582)
2008年
[1]. 周朝暉, 郭烈錦*. Cd1-xZnxS能帶第一性原理計算. 西安交通大學學報, 2008, 42(2): 248-251.
[2]. S.H. Shen, L. Zhao, Z.H. Zhou, L.J. Guo*. Enhanced Photocatalytic Hydrogen Evolution over Cu Doped ZnIn2S4 under Visible Light Irradiation. J. Phys. Chem. C, 2008, 112(41): 16148-16155. (IF: 4.536)
[3]. 李明濤, 蘇進展, 周朝暉, 郭烈錦*. ZnIn2S4薄膜噴霧熱分解製備及其光電化學性質. 西安交通大學學報, 2008, 42(1): 106-109.