吳慶耀,男,華南理工大學軟體學院副院長,教授,博士生導師。
基本介紹
- 中文名:吳慶耀
- 學位/學歷:博士
- 職業:教師
- 專業方向:基於知識圖譜的問答系統
- 任職院校:華南理工大學軟體學院
人物經歷,研究方向,社會兼職,學術成果,榮譽獎項,
人物經歷
教育希夜戰頸背景
2009.09—2014.01哈爾濱工業大學(深圳)計算機軟體與理論博士
2007.09—2009.09哈爾濱工業大學(深圳)計算機科學與技術碩士
2003.09—2007.09華南理工大學軟體工程學士良探台
工作經歷
2018.09-- 華南理工大學軟體學院教授
2015.03--2018.09華南理工大學軟體學院副教授
研究方向
跨媒體異構數據智慧型: 視覺問答禁轎元,機器人雷射/慣性/視覺SLAM導航,語音去噪/分離;
計算機視覺主要包括:2D圖像及3D點雲分割、識別、檢測;
自然語言處理主要包括:基於知識圖譜的問答系統,跨領域推薦系統。
社會兼職
Elsevier國際期刊Software Impacts副主編;ICEBE 2020會議主席;NeurIPS、CVPR、IJCAI、AAAI等多個國際會議審稿人;TPAMI、TNNLS、TKDE等多個Trans期刊審稿人。
學術成果
廣東省重點研發項目,“多模態智慧型機器人視覺感知與人機互動關鍵技術研究及套用示鞏厚棕提范”,2018-2021
國家自然科學基金面上基金,“基於對抗表示學習的知識遷移關鍵技術研究”2019-2022
國家自然科學基金青年基金,“基於機率語義分析的多關係圖多類標分類方法研究”,2016-2018
廣東省科技專項--公益研究與能力建設,“面向特定主題網路媒體大數據的深度學習技術研究及套用”,2017-2018
廣東省科技專項--協同創新與平台環境建設,“深度形體動作識別關鍵榜凶技術研究及危迎幾在社區安防上的套用”,2017-2018
廣州市珠江新星項目,“面向遷移學習的生成對抗網路研究”,2017-2018
CCF-騰訊犀牛鳥基金滾動項目,“面向廣告推薦的深度學朽棵檔習模型壓縮與特徵理解及在小樣本條件下的套用”,2019-2020
CCF-騰訊犀牛鳥基金項目,“面向遷移學習的生成對抗網路研究及套用”,2017-2018
廣東省教育廳青年創新人才,2016-2017
中央高校基本科研業務傑青項目,2015-2016
期刊論文:
- Yifan Zhang, Peilin Zhao, Shuaicheng Niu, Jiezhang Cao, Junzhou Huang, Qingyao Wu(吳慶耀), Mingkui Tan, "Online Adaptive Asymmetric Active Learning with Limited Budgets", IEEE Transactions on Knowledge and Data Engineering, in Press
- Xiaojun Chen, Renjie Chen, Qingyao Wu(吳慶耀)*, Yixiang Fang, Feiping Nie, Zhexue Huang, "LABIN: Balanced Min Cut for Large-scale Data", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), TNNLS, 2019, doi: 10.1109/TNNLS.2019.2909425
- Hanrui Wu; Yuguang Yan; Yuzhong Ye; Michael K Ng; Qingyao Wu(吳慶耀)*, "Geometric Knowledge Embedding for Unsupervised Domain Adaptation", Knowledge-Based Systems, in Press
- Mingkui Tan, Yuguang Yan, Jiezhang Cao, Qingyao Wu(吳慶耀), "Learning Sparse PCA on Stiefel Manifold via Stabilized ADMM Method", IEEE Transactions on Knowledge and Data Engineering, in Press
- Runhao Zeng, Chuang Gan, Peihao Chen, Wenbing Huang, Qingyao Wu(吳慶耀), Mingkui Tan, "Breaking Winner-takes-all: Iterative-winners-out Networks for Weakly Supervised Temporal Action Localization", IEEE Transactions on Image Processing, in Press
- Fan Lyu, Qi Wu, Fuyuan Hu, Qingyao Wu(吳慶耀), Mingkui Tan, Attend and Imagine: Multi-label Image Classification with Visual Attention and Recurrent Neural Networks, to appear in IEEE Transactions on Multimedia, in Press
- Hanrui Wu, Yuguang Yan, Michael Ng, Huaqing Min, Qingyao Wu(吳慶耀)*, "Online Heterogeneous Transfer Learning by Knowledge Transition", ACM Transactions on Intelligent Systems and Technology, 2019
- Yuguang Yan, Qingyao Wu(吳慶耀)*, Mingkui Tan*, Michael Ng, Huaqing Min, Ivor Tsang, "Online Heterogeneous Transfer by Hedge Ensemble of Offline and Online Decisions", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 29(7), pp. 3252-3263, 2018 (IF:7.982)
- Qingyao Wu(吳慶耀), Hanrui Wu, Xiaoming Zhou, Mingkui Tan, Yonghui Xu, Yuguang Yan, Tianyong Hao, "Online Transfer Learning with Multiple Homogeneous or Heterogeneous Sources", IEEE Transactions on Knowledge and Data Engineering (TKDE), 29(7), pp.1494-1507, 2017 (IF:3.857)
- Qingyao Wu(吳慶耀), Mingkui Tan, Hengjie Song, Jian Chen, Michael K. Ng. "ML-Forest: A Multi-label Tree Ensemble Method for Multi-Label Classification", IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(10), 2016 (IF:3.857)
- Qingyao Wu(吳慶耀)*, Yunming Ye, Haijun Zhang, Tommy W.S.Chow, and Shen-Shyang Ho. "ML-TREE: A Tree-Structure Based Approach to Multi-Label Learning", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 26(3): 430-443, 2015 (IF:7.982)
- Qingyao Wu(吳慶耀), Michael Ng, and Yunming Ye. "Co-Transfer Learning Using Coupled Markov Chains with Restart", IEEE Intelligent Systems, 29(4), pp.26-33, 2014 (IF:4.464)
- Qingyao Wu(吳慶耀), Yunming Ye, Yang Liu, and Michael K. Ng. "SNP Selection and Classification of Genome-wide SNP Data Using Stratified Sampling Random Forests", IEEE Transactions on Nanobioscience, 11(3), 216-227, 2012 (IF:1.927)
- Xiaojun Chen, Joshua Z. Huang, Qingyao Wu(吳慶耀)*, Min Yang "Subspace Weighting Co-Clustering of Gene Expression Data", IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 16(2), 352-364, 2019 (IF: 2.896)
- Xutao Li, Michael K. Ng, Gao Cong, Yunming Ye, and Qingyao Wu(吳慶耀), "MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation", IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 28(8), 1787-1800, 2017 (IF: 7.982)
- Yonghui Xu, Sinno Pan, Hui Xiong, Qingyao Wu(吳慶耀), Yonghua Luo, Huaqing Min, Henjie Song, "A Unified Framework for Metric Transfer Learning", IEEE Transactions on Knowledge and Data Engineering (TKDE), 29(6),1158-1171, 2017 (IF:3.857)
- Qingyao Wu(吳慶耀), Michael Ng, Yunming Ye, Xutao Li, and Yan Li. "Multi-Label Collective Classification via Markov Chain Based Learning Method", Knowledge-Based Systems, 63: 1-14, 2014 (IF: 5.101)
- Qingyao Wu(吳慶耀)*, Yunming Ye, Haijun Zhang, Michael Ng, Xutao Li, Shen-Shyang Ho. "ForesTexter: An Efficient Random Forest Algorithm for Imbalanced Text Categorization", Knowledge-Based Systems, 67: 105-116, 2014 (IF:5.101)
- Qingyao Wu(吳慶耀), Mingkui Tan, Xutao Li, Huaqing Min, Ning Sun*, "NMFE-SSCC: Non-negative matrix factorization ensemble for semi-supervised collective classification", Knowledge-Based Systems, 89 (2015): 160-172. (IF: 5.101)
- Qingyao Wu(吳慶耀), Xiaoming Zhou, Yuguang Yan, Hanrui Wu, Huaqing Min, "Online Transfer Learning by Leveraging Multiple Source Domains" Knowledge and Information Systems, 52(3), pp 687-707, 2017 (IF: 2.397)
- Qingyao Wu(吳慶耀), Michael Ng, and Yunming Ye. "Markov-MIML: A Markov Chain Based Multi-Instance Multi-Label Learning Algorithm", Knowledge and Information Systems, 37(1): 83-104, 2013 (IF:2. 397)
- Yonghui Xu, Huaqing Min, Qingyao Wu(吳慶耀)*, Henjie Song, "Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction", Scientific Reports, 7:41831, 2017 (IF: 4.011)
- Qingyao Wu(吳慶耀), Yunming Ye, Shen-Shyang Ho and Shuigeng Zhou. "Semi-Supervised Multi-label Collective Classification Ensemble for Functional Genomics", BMC Genomics, 15 (Suppl 9):S17, 2014 (IF:3.730)
- Xutao Li, Yunming Ye, Michael Ng and Qingyao Wu(吳慶耀)*. "MultiFacTV: Module Detection from Higher-order Time Series Biological Data", BMC Genomics, 14(S4), 2013 (IF: 3.730)
- Qingyao Wu(吳慶耀), Zhenyu Wang, Chunshan Li, Yunming Ye, Yueping Li, and Ning Sun. "Protein functional properties prediction in sparsely-label PPI networks through Regularized non-negative matrix factorization", BMC Systems Biology, 9 (Suppl 1):S9, 2015 (IF:2.050)
- Qingyao Wu(吳慶耀), Yunming Ye, Michael Ng, Shen-Shyang Ho and Ruichao Shi. "Collective prediction of protein functions from protein-protein interaction networks", BMC Bioinformatics, 15(S9), no. Suppl 2, 2014 (IF:2.213)
- Renjie Chen, Ning Sun, Xiaojun Chen, Min Yang and Qingyao Wu(吳慶耀)*, "Supervised Feature Selection With a Stratified Feature Weighting Method", IEEE Access, 6 (2018): 15087-15098 (IF:3.557)
- Qingyao Wu(吳慶耀), Jian Chen, Shen-Shyang Ho, Xutao Li, Huaqing Min, Chao Han, "Multi-Label Regularized Generative Model for Semi-Supervised Collective Classification in Large-Scale Networks", Big Data Research, 2 (4), 187-201, 2015
- Chao Han, Yunkun Tan, Jinhui Zhu, Yong Guo, Jian Chen, Qingyao Wu(吳慶耀)*, "Online feature selection of Class Imbalance via PA algorithm" Journal of Computer Science and Technology (JCST), 31(4): 673-682, 2016 (IF: 0.878)u, Yong Guo, Jian Chen,Qingyao Wu*, 'Online feature selection of Class Imbalance via PA algorithm'Journal of Computer Science and Technology (JCST), 31(4): 673-682, 2016(IF:0.878)
- Chao Han, Jian Chen, Qingyao Wu(吳慶耀)*, Shuai Mu, Huaqing Min, "Sparse Markov Chain based Semi-Supervised Multi-Instance Multi-Label Method for Protein Function Prediction", Journal of Bioinformatics and Computational Biology (JBCB), 13(05), 2015. (IF: 0.991)
- Yonghui Xu, Huaqing Min, Hengjie Song and Qingyao Wu(吳慶耀)*, " Multi-Instance Multi-Label Distance Metric Learning for Genome-Wide Protein Function Prediction", Computational Biology and Chemistry, 11(5):891-902, 2016 (IF: 1.412)
- Yunming Ye, Qingyao Wu(吳慶耀), Joshua Zhexue Huang, Michael K. Ng and Xutao Li. "Stratified Sampling for Feature Subspace Selection in Random Forest for High Dimensional Data", Pattern Recognition (PR), 46(3): 769-787, 2013 (IF:3.962)
會議論文:
- Chi Zhang, Guosheng Lin, Fayao Liu, Jiushuang Guo, Qingyao Wu(吳慶耀), Rui Yao, "Pyramid Graph Networks with Connection Attentions for Region-Based One-Shot Semantic Segmentation", ICCV 2019
- Min Yang, Lei Chen, Xiaojun Chen, Qingyao Wu(吳慶耀), Wei Zhou, Ying Shen, "Knowledge-enhanced Hierarchical Attention for Community Question Answering with Multi-task and Adaptive Learning", IJCAI 2019
- Shihao Zhang, Yuguang Yan, Pengshuai Yin, Zhen Qiu, Wei Zhao, Guiping Cao, Wan Chen, Jin Yuan, Risa Higashita, Qingyao Wu(吳慶耀), Mingkui Tan, Jiang Liu. “Guided M-Net for High-resolution Biomedical Image Segmentation with Weak Boundaries and Noise. OMIA. 2019 (best paper)
- Yifan Zhang, Hanbo Chen, Ying Wei, Peilin Zhao, Jiezhang Cao, Mingkui Tan, Qingyao Wu(吳慶耀), Xinjuan Fan, Xiaoying Lou, Hailing Liu, Jinlong Hou, Xiao Han, Jianhua Yao, Junzhou Huang, "From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification", MICCAI 2019
- Shihao Zhang, Huazhu Fu, Yuguang Yan, Yubing Zhang, Qingyao Wu(吳慶耀), Ming Yang, Mingkui Tan, Yanwu Xu, "Attention Guided Network for Retinal Image Segmentation", MICCAI 2019
- Pengshuai Ying#, Qingyao Wu(吳慶耀)#, Mingkui Tan, Ming Yang, Yubing Zhang, Huaqing Min, Yanwu Xu, "PM-NET: Pyramid Multi-Label Network for Optic Disc and Cup Segmentation", MICCAI 2019
- Yuguang Yan, Mingkui Tan, Yanwu Xu, Jiezhang Cao, Michael K. Ng, Huaqing Min, Qingyao Wu(吳慶耀)*, Oversampling for Imbalanced Data via Optimal Transport, Association for the Advancement of Artificial Intelligence (AAAI-19), 2019
- Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu(吳慶耀), Junzhou Huang, Jinhui Zhu "Discrimination-aware Channel Pruning for Deep Neural Networks", Thirty-second Conference on Neural Information Processing Systems (NIPS), 2018
- Junhong Huang, Mingkui Tan, Yuguang Yan, Chunmei Qing, Qingyao Wu(吳慶耀), Zhuliang Yu, Dong Xu "Cartoon-to-Photo Facial Translation with Generative Adversarial Networks", ACML, 2018
- Jiezhang Cao#, Yong Guo#, Qingyao Wu(吳慶耀)#, Chunhua Shen, Mingkui Tan*, "Adversarial Learning with Local Coordinate Coding", Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 2018
- Yifan Zhang, Peilin Zhao, Jiezhang Cao, Wenye Ma, Junzhou Huang, Qingyao Wu(吳慶耀)*, Mingkui Tan "Online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data", ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2018), 2018
- Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan*, Qingyao Wu(吳慶耀)*, "Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation", Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018), 2018
- Chaorui Deng, Qi Wu, Qingyao Wu(吳慶耀)*, Fuyuan Hu, Fan Lyu, Mingkui Tan*, "Visual Grounding via Accumulated Attention", In Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2018), 2018
- Yong Guo#, Qingyao Wu(吳慶耀)#, Jian Chen, Mingkui Tan, "Memorized Batch Normalization for Training Deep Neural Networks", Association for the Advancement of Artificial Intelligence (AAAI-18), 2018
- Renjie Chen, Xiaojun Chen, Guowen Yuan, Wenya Sun and Qingyao Wu(吳慶耀), "A Stratified Feature Ranking Method for Supervised Feature Selection", Association for the Advancement of Artificial Intelligence (AAAI-18), 2018 (Student Abstract Paper)
- Jiezhang Cao#, Qingyao Wu(吳慶耀)#, Yuguang Yan, Li Wang, Mingkui Tan, "On the Flatness of Loss Surface for Two-layered ReLU Networks", the 9th Asian Conference on Machine Learning (ACML-17), 545-560, 2017
- Yuguang Yan, Wen Li, Michael Ng, Mingkui Tan, Hanrui Wu, Huaqing Min, Qingyao Wu(吳慶耀)*, "Learning Discriminative Correlation Subspace for Heterogeneous Domain Adaptation", Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017), 2017, 3252-3258
- Chao Han#, Qingyao Wu(吳慶耀)#, Jiezhang Cao, Michael K. Ng, Mingkui Tan, Jian Chen, "Tensor based Relations Ranking for Multi-relational Collective Classification", In Proceeding of IEEE Conference on Data Mining (ICDM 2017), 2017 (# co-first authors)
- Xiaojun Chen, Guowen Yuan, JianZhe Zhang, Joshua Zhexue Huang, Qingyao Wu(吳慶耀), A Self-Balanced Min-Cut Algorithm for Image Clustering, IEEE International Conference on Computer Vision (ICCV 2017), 2017
- Yuguang Yan, Qingyao Wu(吳慶耀)*, Mingkui Tan, Huaqing Min, "Online Heterogeneous Transfer Learning by Weighted Offline and Online Classifiers", ECCV-2016 workshop on TASK Transferring and Adapting Source Knowledge in Computer Vision, 2016 (Honorable Mention Paper Award)
- Feng Wu, Qiong Liu*, Tianyong Hao, Xiaojun Chen, and Qingyao Wu(吳慶耀)*, "Online Multi-Instance Multi-Label Learning for Protein Function Prediction", IEEE BIBM-2016, 780-785, 2016 Dec
- Yongxin Liao, Shenxi Yuan, Jian Chen, Qingyao Wu(吳慶耀)* and Bin Li, "Joint Classification with Heterogeneous labels using random walk with dynamic label propagation", V9651, pp 3-13, PAKDD-2016, 2016 April
- Ruichao Shi, Qingyao Wu(吳慶耀)*, Yunming Ye, and Shen-Shyang Ho. "A Generative Model with Network Regularization for Semi-Supervised Collective Classification", SDM-2014
- Michael Ng, Qingyao Wu(吳慶耀) and Yunming Ye. "Co-Transfer Learning via Joint Transition Probability Graph Based Method". SIGKDD-2012 Workshop on CDKD, pp.1-9, 2012 (Selected Best Paper to IEEE IS Special Issue)
榮譽獎項
2019年,“廣東特支計畫”科技創新青年拔尖人才
2017年,廣州市珠江科技新星
2018年,廣東省自然科學獎二等獎
2016年,深圳市自然科學獎二等獎
會議論文:
- Chi Zhang, Guosheng Lin, Fayao Liu, Jiushuang Guo, Qingyao Wu(吳慶耀), Rui Yao, "Pyramid Graph Networks with Connection Attentions for Region-Based One-Shot Semantic Segmentation", ICCV 2019
- Min Yang, Lei Chen, Xiaojun Chen, Qingyao Wu(吳慶耀), Wei Zhou, Ying Shen, "Knowledge-enhanced Hierarchical Attention for Community Question Answering with Multi-task and Adaptive Learning", IJCAI 2019
- Shihao Zhang, Yuguang Yan, Pengshuai Yin, Zhen Qiu, Wei Zhao, Guiping Cao, Wan Chen, Jin Yuan, Risa Higashita, Qingyao Wu(吳慶耀), Mingkui Tan, Jiang Liu. “Guided M-Net for High-resolution Biomedical Image Segmentation with Weak Boundaries and Noise. OMIA. 2019 (best paper)
- Yifan Zhang, Hanbo Chen, Ying Wei, Peilin Zhao, Jiezhang Cao, Mingkui Tan, Qingyao Wu(吳慶耀), Xinjuan Fan, Xiaoying Lou, Hailing Liu, Jinlong Hou, Xiao Han, Jianhua Yao, Junzhou Huang, "From Whole Slide Imaging to Microscopy: Deep Microscopy Adaptation Network for Histopathology Cancer Image Classification", MICCAI 2019
- Shihao Zhang, Huazhu Fu, Yuguang Yan, Yubing Zhang, Qingyao Wu(吳慶耀), Ming Yang, Mingkui Tan, Yanwu Xu, "Attention Guided Network for Retinal Image Segmentation", MICCAI 2019
- Pengshuai Ying#, Qingyao Wu(吳慶耀)#, Mingkui Tan, Ming Yang, Yubing Zhang, Huaqing Min, Yanwu Xu, "PM-NET: Pyramid Multi-Label Network for Optic Disc and Cup Segmentation", MICCAI 2019
- Yuguang Yan, Mingkui Tan, Yanwu Xu, Jiezhang Cao, Michael K. Ng, Huaqing Min, Qingyao Wu(吳慶耀)*, Oversampling for Imbalanced Data via Optimal Transport, Association for the Advancement of Artificial Intelligence (AAAI-19), 2019
- Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu(吳慶耀), Junzhou Huang, Jinhui Zhu "Discrimination-aware Channel Pruning for Deep Neural Networks", Thirty-second Conference on Neural Information Processing Systems (NIPS), 2018
- Junhong Huang, Mingkui Tan, Yuguang Yan, Chunmei Qing, Qingyao Wu(吳慶耀), Zhuliang Yu, Dong Xu "Cartoon-to-Photo Facial Translation with Generative Adversarial Networks", ACML, 2018
- Jiezhang Cao#, Yong Guo#, Qingyao Wu(吳慶耀)#, Chunhua Shen, Mingkui Tan*, "Adversarial Learning with Local Coordinate Coding", Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 2018
- Yifan Zhang, Peilin Zhao, Jiezhang Cao, Wenye Ma, Junzhou Huang, Qingyao Wu(吳慶耀)*, Mingkui Tan "Online Adaptive Asymmetric Active Learning for Budgeted Imbalanced Data", ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2018), 2018
- Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan*, Qingyao Wu(吳慶耀)*, "Semi-Supervised Optimal Transport for Heterogeneous Domain Adaptation", Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI-2018), 2018
- Chaorui Deng, Qi Wu, Qingyao Wu(吳慶耀)*, Fuyuan Hu, Fan Lyu, Mingkui Tan*, "Visual Grounding via Accumulated Attention", In Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2018), 2018
- Yong Guo#, Qingyao Wu(吳慶耀)#, Jian Chen, Mingkui Tan, "Memorized Batch Normalization for Training Deep Neural Networks", Association for the Advancement of Artificial Intelligence (AAAI-18), 2018
- Renjie Chen, Xiaojun Chen, Guowen Yuan, Wenya Sun and Qingyao Wu(吳慶耀), "A Stratified Feature Ranking Method for Supervised Feature Selection", Association for the Advancement of Artificial Intelligence (AAAI-18), 2018 (Student Abstract Paper)
- Jiezhang Cao#, Qingyao Wu(吳慶耀)#, Yuguang Yan, Li Wang, Mingkui Tan, "On the Flatness of Loss Surface for Two-layered ReLU Networks", the 9th Asian Conference on Machine Learning (ACML-17), 545-560, 2017
- Yuguang Yan, Wen Li, Michael Ng, Mingkui Tan, Hanrui Wu, Huaqing Min, Qingyao Wu(吳慶耀)*, "Learning Discriminative Correlation Subspace for Heterogeneous Domain Adaptation", Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-2017), 2017, 3252-3258
- Chao Han#, Qingyao Wu(吳慶耀)#, Jiezhang Cao, Michael K. Ng, Mingkui Tan, Jian Chen, "Tensor based Relations Ranking for Multi-relational Collective Classification", In Proceeding of IEEE Conference on Data Mining (ICDM 2017), 2017 (# co-first authors)
- Xiaojun Chen, Guowen Yuan, JianZhe Zhang, Joshua Zhexue Huang, Qingyao Wu(吳慶耀), A Self-Balanced Min-Cut Algorithm for Image Clustering, IEEE International Conference on Computer Vision (ICCV 2017), 2017
- Yuguang Yan, Qingyao Wu(吳慶耀)*, Mingkui Tan, Huaqing Min, "Online Heterogeneous Transfer Learning by Weighted Offline and Online Classifiers", ECCV-2016 workshop on TASK Transferring and Adapting Source Knowledge in Computer Vision, 2016 (Honorable Mention Paper Award)
- Feng Wu, Qiong Liu*, Tianyong Hao, Xiaojun Chen, and Qingyao Wu(吳慶耀)*, "Online Multi-Instance Multi-Label Learning for Protein Function Prediction", IEEE BIBM-2016, 780-785, 2016 Dec
- Yongxin Liao, Shenxi Yuan, Jian Chen, Qingyao Wu(吳慶耀)* and Bin Li, "Joint Classification with Heterogeneous labels using random walk with dynamic label propagation", V9651, pp 3-13, PAKDD-2016, 2016 April
- Ruichao Shi, Qingyao Wu(吳慶耀)*, Yunming Ye, and Shen-Shyang Ho. "A Generative Model with Network Regularization for Semi-Supervised Collective Classification", SDM-2014
- Michael Ng, Qingyao Wu(吳慶耀) and Yunming Ye. "Co-Transfer Learning via Joint Transition Probability Graph Based Method". SIGKDD-2012 Workshop on CDKD, pp.1-9, 2012 (Selected Best Paper to IEEE IS Special Issue)
榮譽獎項
2019年,“廣東特支計畫”科技創新青年拔尖人才
2017年,廣州市珠江科技新星
2018年,廣東省自然科學獎二等獎
2016年,深圳市自然科學獎二等獎