可壓縮流的大渦模擬方法

可壓縮流的大渦模擬方法

《可壓縮流的大渦模擬方法》是2013年3月1日世界圖書出版公司出版的圖書,作者是(法)加尼爾(Garnier E.)。

基本介紹

  • 中文名:可壓縮流的大渦模擬方法
  • 作者:(法)加尼爾(Garnier E.)
  • 出版社世界圖書出版公司 
  • 出版時間:2013年3月1日
  • 頁數:276 頁
  • 定價:42.9 元
  • 開本:24 開
  • ISBN:9787510058202
  • 外文名:Large Eddy Simulation for Compressible Flows
  • 類型:英語與其他外語
  • 語種:簡體中文, 英語
內容簡介,圖書目錄,

內容簡介

加尼爾編著的《可壓縮流的大渦模擬方法(英文)》旨在講述les基礎及其在實踐中的套用。為了最大程度地縮小理論框架之間的銜接,緩解les研究和日益增長的工程模型套用中的需求之間的矛盾,《可壓縮流的大渦模擬方法(英文)》最大程度地將和該領域有關論題囊括其中,用全新的方式全面講述了les理論及其套用。

圖書目錄

1 introduction
2 les governing equations
2.1 preliminary discussion
2.2 governing equations
2.2.1 fundamental assumptions
2.2.2 conservative formulation
2.2.3 alternative formulations
2.3 filtering operator
2.3.1 definition
2.3.2 discrete representation of filters
2.3.3 filtering of discontinuities
2.3.4 filter associated to the numerical method
2.3.5 commutation error
2.3.6 favre filtering
2.3.7 summary of the different type of filters
2.4 formulation of the filtered governing equations.
2.4.1 enthalpy formulation
2.4.2 temperature formulation
2.4.3 pressure formulation
2.4.4 entropy formulation
2.4.5 filtered total energy equations
2.4.6 momentum equations
2.4.7 simplifying assumptions
2.5 additional relations for les of compressible flows
2.5.1 preservation of original symmetries
2.5.2 discontinuity jump relations for les
2.5.3 second law of thermodynamics
2.6 model construction
2.6.1 basic hypothesis
2.6.2 modeling strategies
3 compressible turbulence dynamics
3.1 scope and content of this chapter
3.2 kovasznay decomposition of turbulent fluctuations
3.2.1 kovasznay's linear decomposition
3.2.2 weakly nonlinear kovasznay decomposition
3.3 statistical description of compressible turbulence
3.4 shock-turbulence interaction
3.4.1 introduction to the linear interaction approximation theory
3.4.2 vortical turbulence-shock interaction
3.4.3 mixed-mode turbulence-shock interaction
3.4.4 consequences for subgrid modeling
3.5 different regimes of isotropic compressible turbulence
3.5.1 quasi-isentropic-turbulence regime
3.5.2 nonlinear subsonic regime
3.5.3 supersonic regime
3.5.4 consequences for subgrid modeling
4 functional modeling
4.1 basis of functional modeling
4.1.1 phenomenology of scale interactions
4.1.2 basic functional modeling hypothesis
4.2 sgs viscosity
4.2.1 the boussinesq hypothesis
4.2.2 smagorinsky model
4.2.3 structure function model
4.2.4 mixed scale model
4.3 isotropic tensor modeling
4.4 sgs heat flux
4.5 modeling of the subgrid turbulent dissipation rate
4.6 improvement of sgs models
4.6.1 structural sensors and selective models
4.6.2 accentuation technique and filtered models
4.6.3 high-pass filtered eddy viscosity
4.6.4 wall-adapting local eddy-viscosity model
4.6.5 dynamic procedure
4.6.6 implicit diffusion and the implicit les concept
5 explicit structural modeling
5.1 motivation of structural modeling
5.2 models based on deconvolution
5.2.1 scale-similarity model
5.2.2 approximate deconvolution model
5.2.3 tensor-diffusivity model
5.3 regularization techniques
5.3.1 eddy-viscosity regularization
5.3.2 relaxation regularization
5.3.3 regularization by explicit filtering
5.4 multi-scale modeling of subgrid-scales
5.4.1 multi-level approaches
5.4.2 stretched-vortex model
5.4.3 variational multi-scale model
6 relation between sgs model and numerical discretization
6.1 systematic procedures for nonlinear error analysis
6.1.1 error sources
6.1.2 modified differential equation analysis
6.1.3 modified differential equation analysis in spectral space
6.2 implicit les approaches based on linear and nonlinear discretization schemes
6.2.1 the volume balance procedure of schumamm
6.2.2 the kawamura-kuwahara scheme
6.2.3 the piecewise-parabolic method
6.2.4 the flux-corrected-transport method
6.2.5 the mpdata method
6.2.6 the optimum finite-volume scheme
6.3 implicit les by adaptive local deconvolution
6.3.1 fundamental concept of aldm
6.3.2 aldm for the incompressible navier-stokes equations.
6.3.3 aldm for the compressible navier-stokes equations
7 boundary conditions for large-eddy simulation of compressible flows
7.1 introduction
7.2 wall modeling for compressible les
7.2.1 statement of the problem
7.2.2 wall boundary conditions in the kovasznay decomposition framework: an insight
7.2.3 turbulent boundary layer: vorticity and temperature fields
7.2.4 turbulent boundary layer: acoustic field
7.2.5 consequences for the development of compressible wall models
7.2.6 extension of existing wall models for incompressible flows
7.3 unsteady turbulent inflow conditions for compressible les
7.3.1 fundamentals
7.3.2 precursor simulation: advantages and drawbacks
7.3.3 extraction-rescaling techniques
7.3.4 synthetic-turbulence-based models
8 subsonic applications with compressibility effects
8.1 homogeneous turbulence
8.1.1 context
8.1.2 a few realizations
8.1.3 influence of the numerical method
8.1.4 sgs modeling
8.2 channel flow
8.2.1 context
8.2.2 a few realizations
8.2.3 influence of the numerical method
8.2.4 influence of the sgs model
8.3 mixing layer
8.3.1 context
8.3.2 a few realizations
8.3.3 influence of the numerical method
8.3.4 influence of the sgs model
8.4 boundary-layer flow
8.4.1 context
8.4.2 a few realizations
8.5 jets
8.5.1 context
8.5.2 a few realizations
8.5.3 influence of the numerical method
8.5.4 influence of the sgs model
8.5.5 physical analysis
8.6 flows over cavities
8.6:1 context
8.6.2 a few realizations
8.6.3 influence of the numerical method
8.6.4 influence of the sgs model
8.6.5 physical analysis
9 supersonic applications
9.1 homogeneous turbulence
9.2 channel flow
9.2.1 context
9.2.2 a few realizations
9.2.3 influence of the numerical method
9.2.4 influence of the grid resolution
9.2.5 influence of the sgs model
9.3 boundary layers
9.3.1 context
9.3.2 a few realizations
9.3.3 influence of the numerical method
9.3.4 influence of the grid resolution
9.3.5 sgs modeling
9.4 jets
9.4.1 context
9.4.2 a few realizations
9.4.3 influence of the numerical method
9.4.4 influence of the sgs model
9.4.5 physical analysis
10 supersonic applications with shock-turbulence interaction
10.1 shock-interaction with homogeneous turbulence
10.1.1 phenomenology of shock-interaction with homogeneous turbulence
10.1.2 les of shock-interaction with homogeneous turbulence
10.2 shock-turbulence interaction in jets
10.2.1 phenomenology of shock-turbulence interaction in jets
10.2.2 les of shock-turbulence interaction in jets
10.3 shock-turbulent-boundary-layer interaction
10.3.1 phenomenology of shock-turbulent-boundary-layer interaction
10.3.2 les of compression-ramp configurations
references
index

相關詞條

熱門詞條

聯絡我們