反照粒子

反照粒子也稱為反粒子,是正電子、反質子、反中子、反中微子、反介子、反超子等粒子的統稱。反粒子與所對應的粒子在質量、自旋、平均壽命和磁矩大小都相同;如果帶電。兩者所帶電量相等而符號相反。磁矩和自旋的取向關係也相反。反粒子與所對應的粒子相遇就發生湮滅而轉變為別的粒子。

基本介紹

  • 中文名:反照粒子
  • 外文名:Albedo particle
粒子簡介,發現過程,實驗檢驗,

粒子簡介

在原子核以下層次的物質的單獨形態以及輕子和光子,統稱粒子。在歷史上,有些粒子曾被稱為基本粒子
所有的粒子,都有與其質量、壽命、自旋、同位旋相同,但電荷、重子數輕子數、奇異數等量子數異號的粒子存在,稱為該種粒子的反粒子。除了某些中性玻色子外,粒子與反粒子是兩種不同的粒子。
一切粒子均有其相應的反粒子,如電子e-的反粒子是正電子e+,質子p的反粒子是反質子,中子n的反粒子是反中子,1959年王淦昌領導的小 組發現的反西格碼負超子是Σ-的反粒子。有些粒子的反粒子就是它自己。如γ光子、π0介子和η介子。一些中性玻色子如光子、π0介子等,其反粒子就是它們自己。

發現過程

反粒子最早是1928年P.A.M.狄拉克理論上預言正電子而提出的,1932年被C.D.安德森實驗發現而證實;1956年美國物理學家張伯倫在勞倫斯-伯克利國家實驗室發現了反質子,他用玻璃管中的被粒子加速器加速過的高能粒子對相撞,發現在突然間成對出現了幾道軌跡,又在短時間內相撞而互相湮滅,這是人們第一次直接觀測到反粒子。進一步的研究發現,狄拉克的空穴理論對玻色子不適用,因而不能解釋所有的粒子和反粒子。根據量子場論,粒子被看作是場的激發態,而反粒子就是這種激發態對應的復共軛激發態。
正反粒子是從場論的觀點來認識的,場的激發態表現為粒子,與之對應,場的復共軛激發態表現為反粒子。當γ光子的能量大於某種粒子靜能的兩倍,在一定的條件下就可以產生正反粒子對;反之,正反粒子相遇可湮滅並產生兩個光子或 3 個光子,遵從質量-能量守恆動量守恆
每一種粒子都有一個和它的質量、壽命、自旋嚴格相等,而電荷卻正好相反的反粒子存在,這是狄拉克在他的正電子預言中提出來的。狄拉克方程預言了一種新的電子——正電子,從而開創了反原子、反物質、反世界的研究。1932年美國物理學家安德森在宇宙線的研究中發現了正電子,這是人類發現的第一個反粒子。

實驗檢驗

如果所有的粒子都有相應的反粒子,首先檢驗的是應該存在質子的反粒子、中子的反粒子。1956年美國物理學家張伯倫(Owen Cham-berlain)等在加速器的實驗中,發現了反質子,即質量和質子相同,自旋量子數也是1/2,帶一個單位負電荷的粒子。接著又發現了反中子。後來發現,各種粒子都有相應的反粒子存在,這個規律是普遍的。有些粒子的反粒子就是它自己,這種粒子稱為純中性粒子。光子就是一種純中性粒子,光子的反粒子就是光子自己。在粒子物理學中,已不再採用狄拉克的空穴理論來認識正反粒子之間的關係,而是從正反粒子完全對稱的場論觀點來認識。
迄今,已經發現了幾乎所有相對於強作用來說是比較穩定的粒子的反粒子。 如果反粒子按照通常粒子那樣結合起來就形成了反原子。由反原子構成的物質就是反物質

相關詞條

熱門詞條

聯絡我們