基本介紹
基本信息,主要貢獻,
基本信息
主要貢獻
克萊姆早年在日內瓦讀書,1724年起在日內瓦加爾文學院任教,1734年成為幾何學教授,1750年任哲學教授。他自1727年進行為期兩年的旅行訪學。在巴塞爾與約翰·伯努利、歐拉等人學習交流5個月,結為摯友。後又到英國、荷蘭、法國等地拜見許多數學名家,回國後在與他們的長期通信 中,加強了數學家之間的聯繫,為數學寶庫也留下大量有價值的文獻。他一生未婚,專心治學,平易近人且德高望重,先後當選為倫敦皇家學會、柏林研究院和法國、義大利等學會的成員。首先定義了正則、非正則、超越曲線和無理曲線等概念,第一 次正式引入坐標系的縱軸(Y軸),然後討論曲線變換,並依據曲線方程的階數將曲線進行分類。為了確定經過5個點的一般二次曲線的係數,套用了著名的“克萊姆法則”,即由線性方程組的係數確定方程組解的表達式。該法則於1729年由英國數學家馬克勞林得到,1748年發表,但克萊姆的優越符號使之流傳。其最著名的工作是他1750年發表在代數曲線方面的權威之作;它最早證明一個第n度的曲線是由:n(n + 3)/2點來決定。