基本介紹
- 中文名:加性數論
- 外文名:additive theory of number
- 別名:堆壘數論
- 相關問題:加性問題
- 著名問題:哥德巴赫猜想、華林問題等
- 所屬學科:數學(解析數論)
基本介紹,多角數問題,平方和問題,哥德巴赫問題,華林問題,
基本介紹
加性數論(additive theory ofnumber) 又稱堆壘數論,是關於“加性問題”的一個數論分支。它研究的典型問
題是:設
是全體非負整數的集合,
是的有限個或可數個子集,試判定對
中的每一個n,方程
是否可解或其解數
,其中
。這類問題與整數集合的加法性質有關。堆壘數論的歷史也很古老,費馬等人就開始了堆壘數論的某些研究。以下是幾個著名的堆壘數論問題。
![](/img/7/067/wZ2NnLxQGZjVmNxgjYwQDO2UzMwEjM5U2NkVWY1IjY5EzNzYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/067/wZ2NnLxQGZjVmNxgjYwQDO2UzMwEjM5U2NkVWY1IjY5EzNzYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/142/wZ2NnL5QGOzQWY2UTO1QDZwEGZiNjY2QWYxEWOhZmZyMWN0IzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/067/wZ2NnLxQGZjVmNxgjYwQDO2UzMwEjM5U2NkVWY1IjY5EzNzYzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/936/wZ2NnLiZTZjFmYjFGZ0kDZmRzY1YDZ5gTMjRGNlZWYkRmN5AzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/b41/wZ2NnLidzM2IDNjNmYiVWM0YTMmhzMjRWZygzMzQDN0YzNiVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/2c6/wZ2NnL4UWN3YGOkFDNjFDZ1U2NiFjNxQWNmNTYjVTOlJjZ3M2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
多角數問題
設整數
,由
確定——個數列
,屬於這個數列的整數稱為m階多角數。其通項為:
。易知,4角數就是平方數。1636年,費馬猜測:每個自然數都可以表示為m個m階多角數之和。拉格朗日於1772年證明了m=4的情況;勒讓德於1798年證明了m=3的情況;1813年,柯西證明了,這個猜測,解決了多角數問題。
![](/img/3/e58/wZ2NnLmZWO2QDMiRGNwI2MjZWNwkDZxgTZxQWYwYjZjZTMyM2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/f/dab/wZ2NnLyYjYyQDOkJmZlNzNiVWO0YjZygjNkFjY4AjZxYTMiR2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/d96/wZ2NnLyM2MzMTN0UDZ2I2NhhzNwADMjJTO1UmM2cDNwAzNlZzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/340/wZ2NnL5MjMmhDNwUzM1YDM0MDZllTZiZGO2Y2MyczYmJGM4czLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
平方和問題
求不定方程
的整數解的個數
的問題,其中s是給定的正整數。例如
。
![](/img/a/999/wZ2NnLiFWO3YTO2YGZyYzYxIzMyETMwUjYjZmYhFGN4YTYlNzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/4c3/wZ2NnLxIjMkFDZ1EGZ3UTN0MWOyQ2YjJDZykzN3EWN4UWZwE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/190/wZ2NnLhFGNlVWY5IWZ0UGNwgTMwIGM1UWZ3ITY2UjN5U2NkRzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
1829年,雅可比對
予以證明,還證明了
。1919年,哈代等人得到了
時,
的漸近公式。現在對s≤24,均已得出
的具體表達式。1926年克洛斯特曼,1962年埃斯特曼分別討論了形如
的平方和問題,拓廣了平方和問題,開拓了一系列新的領域。
![](/img/9/460/wZ2NnLmFjMldjYxQ2Y4ImYiZWNiJGZiVWOxYzMzM2YzYDOhZ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/b/229/wZ2NnL3kDO0MGN4gjN0ATN4QGNkRTOkhDMzImZzImZiNTN2I2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/7df/wZ2NnLkZWMmFmN4EmM2EDNkRGNllTOmZzMyMTYlNWNyEDNzkzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/4c3/wZ2NnLxIjMkFDZ1EGZ3UTN0MWOyQ2YjJDZykzN3EWN4UWZwE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/1/4c3/wZ2NnLxIjMkFDZ1EGZ3UTN0MWOyQ2YjJDZykzN3EWN4UWZwE2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/9/873/wZ2NnL2kTMyUTZyUTM5gTMzETZ1E2Y4QTYyMzMzIDNxE2NkVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
哥德巴赫問題
哥德巴赫問題是堆壘數論亦是整個數論最有魅力的問題之一(見哥德巴赫猜想)。
華林問題
1770年,華林推測:任意正整數能夠用不超過4個平方數的和、不超過9個立方數之和或不超過19個四次方數之和來表示。意思是:對任意給定的整數k≥2,必存在一個正整數
,使得每個正整數n必是
個非負的k次方數之和。即不定方程
![](/img/7/b1a/wZ2NnL3MWYlZjYxQ2Y5cjY3EDMmJTOihTY4ADM3MTZxcTZ5EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/b1a/wZ2NnL3MWYlZjYxQ2Y5cjY3EDMmJTOihTY4ADM3MTZxcTZ5EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/68d/wZ2NnL1EWOzMDN3kDM4kTOmljZ5UWO0QTYjNWO2UzN3gTO4Y2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
對所有的整數n≥0有非負整數解
。這就是華林問題(還包括解的數目及極值問題)。
![](/img/1/946/wZ2NnL5UjMkdDMmZmMhR2NlVWO0AzM5UjY0EGZxIGMlFDOwgzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
華林還猜測
的最小值
。1770年拉格朗日證明了
;1909年威弗里奇證明了
。設
為使方程(1)對充分大的n可解的
的最小值,易證
。利用
的上界估計,人們基本上完成了對
的探討:當
時有條件
時,
。1957年,馬勒爾證明當k充分大時條件一定成立;1964年,斯泰姆勒爾證明此條件存
時成立。1964年陳景潤證明
;1985年巴拉薩布雷尼安等證明了
。
![](/img/7/b1a/wZ2NnL3MWYlZjYxQ2Y5cjY3EDMmJTOihTY4ADM3MTZxcTZ5EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/6f2/wZ2NnLykzM1MmMlBDZkFDZmRGNhBzNmFmMkJGMmZDO4YGOmFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/a75/wZ2NnLkJTY2IWN3kjY0kzYmNWO1AzMxczNxEmMmRWMwYjN5kzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/a29/wZ2NnL4MWY2U2N3MzM3QmYkhjM4UWYklDO0IDOzMjNmNjZxUzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/f07/wZ2NnL4UTN5UWN3QDN4YzNzETYxMjNmVmYwITYhZTYwQDZidzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/b1a/wZ2NnL3MWYlZjYxQ2Y5cjY3EDMmJTOihTY4ADM3MTZxcTZ5EzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/5/c1a/wZ2NnL0YWO0ITZjVGOlNjN1EjNhlzM0UmM0MTZwEGMzIGZxMzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/3/f07/wZ2NnL4UTN5UWN3QDN4YzNzETYxMjNmVmYwITYhZTYwQDZidzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/f71/wZ2NnL5AzY1EDMzYjYjFDM2gzNmVmZ5kTZhV2MhhjZiZzMjVzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/c/d68/wZ2NnLxYGMmVGZzEjZ3I2NhhjMxMDZwEmMmZDZ5UGZ0MmYldzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/a/e90/wZ2NnLjJTN4ATYiR2M4MTY4M2MmhjMkhDOkJzNhRjY3YjZlN2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/8/6f2/wZ2NnLykzM1MmMlBDZkFDZmRGNhBzNmFmMkJGMmZDO4YGOmFzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/d/799/wZ2NnLxIzM5UmZ3cTYlJmNhNTZ4ETYxY2N0MWNmRjN0EWOhJ2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/7/f1e/wZ2NnL3UDNkFmY0IjZjFDO5IGO2gDNlhTYmFzMhNGN5IWMyIzLhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)
![](/img/e/ca3/wZ2NnL5IGMwQWZhBTYiFGMjZDNlNGO2YzYjZGZ1QjNldjYyI2LhxWdtJ3bm9SbvNmLz9mYlNmYu4GZj5yZtl2ai9yL6MHc0RHa.jpg)