功率表

功率表

功率表也叫瓦特表,是一種測量電功率的儀器。電功率包括有功功率無功功率和視在功率。未作特殊說明時,功率表一般是指測量有功功率的儀表。

基本介紹

  • 中文名:功率表
  • 別稱:瓦特表
  • 定義:測量電功率的儀器
  • 性質:表征電信號特性的一個重要參數
  • 屬性:指測量有功功率的儀表
內容簡介,度量單位,分類標準,技術指標,變頻,射頻,套用領域,注意事項,量程選擇,測量線路,正確讀數,實際操作,

內容簡介

功率是表征電信號特性的一個重要參數。在直流和低頻範圍,可以通過測量電壓和電流計算功率,功率的瞬時值可用下式表示:
對於周期信號,一個周期內的瞬時功率的平均值,稱為有功功率。有功功率按下式計算:
一種功率表一種功率表
對於正弦電路,下式成立:
上式中,U、I分別為正弦交流電的有效值,φ為電壓與電流信號的相位差。
在超高頻和微波頻段,有TEM波和非TEM波之分。在TEM波的同軸系統中,電壓和電流雖有確切含意,但測量其絕對值很困難。在波導系統中,因為存在不同的電磁模式,電壓和電流失去唯一性。在個頻段和各傳輸系統中,功率是單值表徵信號強度的重要方法。在射頻範圍直接測量功率代替了電壓和電流的測量。

度量單位

功率定義為單位時間內所做的功。基本單位為瓦(W),1W等於在1秒內做1焦耳的功。常用的功率單位還有兆瓦(1MW=10^6W)、千瓦(1KW=10^3W)、毫瓦(1mW=10-3W)、微瓦(1μW=10-6W)、皮瓦(1Pw=10-12W)。
另一種常用的功率單位以分貝毫瓦(dBm)表示。它以1毫瓦為基準電平P0=1mW,實際功率值P(mW)與P0比較後取對數。這是功率的絕對單位。
也可用分貝瓦(dBW)作為功率單位,此時P0=1W,即1 dBW=3 dBm。

分類標準

根據被測信號頻率分類
功率計可分為:直流功率計、工頻功率計、變頻功率計、射頻功率計微波功率計。由於直流功率等於電壓和電流的簡單乘積,實際測量中,一般採用電壓表和電流表替代。工頻功率計是套用較普遍的功率計,常說的功率計一般都是指工頻功率計。變頻功率計是21世紀變頻調速技術高速發展的產物。其測量對象為變頻電量,變頻電量是指用於傳輸功率的,並且滿足下述條件之一的交流電量:
1、信號頻譜僅包含一種頻率成分,而頻率不局限於工頻的交流電信號。
2、信號頻譜包含兩種或更多的被關注的頻率成分的電信號。
變頻電量包括電壓、電流以及電壓電流引出的有功功率無功功率、視在功率、有功電能、無功電能等。
除了變頻器輸出的PWM波,二極體整流的變頻器輸入的電流波形,直流斬波器輸出的電壓波形,變壓器空載的輸入電流波形等,均含有較大的諧波,右圖中為常見變頻電量的波形及相關頻譜圖
由於變頻電量的頻率成分複雜,變頻功率計的測量一般包括基波有功功率(簡稱基波功率)、諧波有功功率(簡稱諧波功率)、總有功功率等,相比工頻功率計而言,其功能較多,技術較複雜,一般稱為變頻功率分析儀寬頻功率分析儀,部分高精度功率分析儀也適用於變頻電量測量。
變頻功率分析儀可以作為工頻功率分析儀使用,除此之外,一般還需滿足下述要求:
1、滿足必要的頻寬要求,並且採樣頻率應高於儀器頻寬的兩倍。
2、要求分析儀在較寬的頻率範圍之內,精度均能滿足一定的要求。
3、具備傅立葉變換功能,可以分離信號的基波諧波
射頻微波功率計按照在測試系統中的連線方式不同分類
終端式通過式兩種。終端式功率計把功率計探頭作為測試系統的終端負載,功率計吸收全部待測功率,由功率指示器直接讀取功率值。通過式功率計利用某種耦合裝置,如定向耦合器、耦合環、探針等從傳輸的功率中按一定的比例耦合出一部分功率,送入功率計度量,傳輸的總功率等於功率計指示值乘以比例係數
射頻或微波功率計按的測量原理分類
熱電阻型功率計使用熱變電阻做功率感測元件。熱變電阻值的溫度係數較大。被測信號的功率被熱變電阻吸收後產生熱量,使其自身溫度升高,電阻值發生顯著變化,利用電阻電橋測量電阻值的變化,顯示功率值。
熱電偶型功率計熱電偶型功率計中的熱偶結直接吸收高頻信號功率,結點溫度升高,產生溫差電勢電勢的大小正比於吸收的高頻功率值。
量熱式功率計典型的熱效應功率計,利用隔熱負載吸收高頻信號功率,使負載的溫度升高,再利用熱電偶元件測量負載的溫度變化量,根據產生的熱量計算高頻功率值。
晶體檢波式功率計晶體二極體檢波器將高頻信號變換為低頻或直流電信號。適當選擇工作點,使檢波器輸出信號的幅度正比於高頻信號的功率。
射頻微波功率計被測信號連續性分類
連續波功率計和脈衝峰值功率計。

技術指標

變頻

以下是變頻功率分析儀的典型技術指標
頻寬:50kHz~100kHz;
採樣頻率:大於頻寬的2倍;
電壓、電流準確級:0.02級、0.05級、0.1級、0.2級、0.5級;
功率準確級:0.05級、0.1級、0.2級、0.5級、1級;
準確級適用基波頻率範圍:DC,0.1Hz~400Hz;
準確級適用電壓範圍:0.75%Un~150%Un;
準確級適用電流範圍:1%In~200%In;
準確級適用功率因數範圍:0.05~1。

射頻

以下是射頻功率計的典型技術指標
功率範圍
保證測量精度的可測功率值的範圍。功率計的功率範圍決定於功率探頭。
最大允許功率
探頭不被損壞的最大輸入功率值,通常指平均功率。在測量大功率峰值信號時,注意峰值電壓峰值功率不能超過一定值,否則會造成功率探頭燒毀。
頻率範圍
能保證測量精度和性能指標的被測信號的頻率範圍。
測量精度
指功率探頭校準修正後的精度。不包括測試系統的失配誤差。
穩定性
功率計的穩定性取決於功率探頭的穩定性和指示器的零漂噪聲干擾
回響時間
也稱功率感測元件的時間常數。通常指功率指示器上升到穩定值的64%所需的時間。
探頭的型號、阻抗
選用功率計探頭時,功率探頭的使用頻率、功率範圍必須與被測信號一致,探頭傳輸線的結構和阻抗應與被測傳輸線相互匹配。

套用領域

光功率測量
用於測量絕對光功率或通過一段光纖的光功率相對損耗。在光纖系統中,測量光功率是最基本的,非常像電子學中的萬用表。在光纖測量中,光功率計是重負荷常用表。通過測量發射端機或光網路的絕對功率,一台光功率計就能夠評價光端設備的性能。用光功率計與穩定光源組合使用,則能夠測量連線損耗、檢驗連續性,並幫助評估光纖鏈路傳輸質量。
電氣產品檢試驗
變頻功率分析儀適用於電力推進、電機、風機水泵風力發電、軌道交通、電動汽車變頻器、特種變壓器、螢光燈LED照明等領域的產品檢試驗、能效評測及電能質量分析

注意事項

量程選擇

選擇功率表的量程就是選擇功率表中的電流量程和電壓量程。使用時應使功率表中的電流量程不小於負載電流,電壓量程不低於負載電壓,而不能僅從功率量程來考慮。例如,兩隻功率表,量程分別是IA、300V和2A、150V,由計算可知其功率量程均為300W,如果要測量一負載電壓為220V、電流為IA的負載功率時應逸用IA、300V的功率表,而2A、150V的功率表雖功率量程也大於負載功率,但是由於負載電壓高於功率表所能承受的電壓150V,故不能使用。所以,在測量功率前要根據負載的額定電壓和額定電流來選擇功率表的量程。

測量線路

電動系測量機構的轉動力矩方向和兩線圈中的電流方向有關,為了防止電動系功率表的指針反偏,接線時功率表電流線圈標有“·”號的端鈕必須接到電源的正極端,而電流線圈的另一端則與負載相連,電流線圈以串聯形式接入電路中。功率表電壓線圈標有“·”號的端鈕可以接到電源端鈕的任一端上,而另一電壓端鈕則跨接到負載的另一端,。
負載電阻遠遠大於電流線圈的電阻時,應採用電壓線圈前接法。這時電壓線圈的電壓是負載電壓和電流線圈電壓之和,功率表測量的是負載功率和電流線圈功率之和。如果負載電阻遠遠大於電流線圈的電阻,則可以略去電流線圈分壓所造成的影響,測量結果比較接近負載的實際功率值。
當負載電阻遠遠小於電壓線圈電阻時,應採用電壓線圈後接法 。這時電壓線圈兩端的電壓雖然等於負載電壓,但電流線圈中的電流卻等於負載電流與功率表電壓線圈中的電流之和,測量時功率讀數為負載功率與電壓線圈功率之和。由於此時負載電阻遠小於電壓線圈電阻,所以電壓線圈分流作用大大減小,其對測量結果的影響也可以大為減小。
如界被測負載本身功率較大,可以不考慮功率表本身的功率對測量結果的影響,則兩種接法可以任意選擇。但最好選用電壓線圈前接法,因為功率表中電流線圈的功率一般都小於電壓線圈支路的功率。

正確讀數

一般安裝式功率表為直讀單量程式,表上的示數即為功率數。但攜帶型功率表一般為多量程式,在表的標度尺上不直接標註示數,只標註分格。在選用不同的電流與電壓量程時,每一分格都可以表示不同的功率數。在讀數時,應先根據所選的電壓量程U、電流量程I以及標度尺滿量程時的格數&,求出每格瓦數(又稱功率表常數)C,然後再乘上指針偏轉的格數夕,就可得到所測功率P
例題
例:有一隻電壓量程為250V,電流量程為3A,標度尺分格數為75的功率表,現用它來測量負載的功率。當指針偏轉50格時負載功率為多少?
功率表
解:先計算功率表常數C
C=UI/a,=250V×3A/75格=10W/格
故被測功率為
P=C色=10W/格×50格=500W

實際操作

對大多數從事電氣方面工作的人員來說,功率表的使用並非難事。但真正做到正確使用功率表,即在準確度一定的情況下確保測量的精度及儀表的使用壽命又並非易事。以單相電動系功率表為例,就功率表的使用及使用中應注意的問題作一介紹。
1 要遵守“發電機端守則”
由電動系功率表的原理可知,功率表的轉矩與流過表內線圈的電流方向有關,一旦其中一個線圈的電流方向改變,轉矩方向也會改變。為此,在功率表兩個線圈對應於電流流進的端鈕上,都注有稱為發電機端的“*”標誌。功率表在接線時,應使電流或電壓線圈帶“*”標誌的端鈕接到電源同極性的端子上,以保證兩線圈的電流方向都從發電機端流入。這就是功率表接線的“發電機端守則”。
2 合理選擇電壓線圈的前、後接方式
儘管電壓線圈不論前接還是後接,功率表都能正偏,對於某些負載來說,測量的結果相差較小,這時兩種接法採用哪種均可。但對於那些電阻(或阻抗)過大或過小的負載來說,兩種接法所得結果相差較大,有時甚至出現與理論相矛盾的結果。
電壓線圈前接方式
這種方式的接線,功率表電流線圈的電流雖然等於負載電流,但功率表電壓支路兩端電壓卻等於負載電壓與功率表電流線圈的電壓之和,在功率表讀數中多了電流線圈的功率消耗。這種接線方式適用於負載電阻(或阻抗)遠比功率表電流線圈電阻(或阻抗)大得多的情況,這樣才能保證功率表本身的功率消耗對測量結果的影響比較小。
電壓線圈後接方式
這種方式的接線,功率表電壓支路兩端的電壓雖然等於負載電壓,但電流線圈的電流卻等於負載電流與功率表電壓線圈支路電流之和,功率表讀數中多了電壓支路的功率消耗。因此,這種接線適用於負載電阻(或阻抗)遠比功率表電壓支路電阻(或阻抗)小得多的情況,這樣才能保證功率表本身的功率消耗對測量結果的影響比較小。

相關詞條

熱門詞條

聯絡我們