劉喜停

劉喜停

劉喜停,男,博士中國海洋大學教授。

基本介紹

  • 中文名:劉喜停
  • 出生日期:1983年
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:海洋沉積學和古氣候學
  • 任職院校:中國海洋大學
個人經歷,研究方向,學術成果,

個人經歷

東北大學,勘查技術與工程,工學學士學位,中國瀋陽,2007.6
中國地質大學(武漢),海洋地質,理學碩士學位,中國武漢,2009.7
德國不萊梅大學,海洋地質,自然科學博士學位,德國不萊梅,2015.1
2015.01-2017.10,中國科學院海洋研究所,博士後,合作導師:李安春 研究員
2017.11-2022.12,中國海洋大學,副教授
2022.12至今,中國海洋大學,教授
學術兼職
《古地理學報》、《Marine Geology》編委
中國海洋湖沼學會地質學分會理事
《Nature Communications》、《Geochimica et Cosmochimica Acta》、《Chemical Geology》、《Marine Geology》、《Science Bulletin》、《沉積學報》等期刊審稿專家。

研究方向

學科方向
海洋沉積學和古氣候學
套用研究
結合當前海洋沉積學和古氣候學的重點研究方向,主要利用海洋沉積物研究現代和地質歷史中海洋沉積物的沉積及成岩過程,重點關注海洋沉積物對古氣候和古海洋演化的指示。目前研究主要集中在東非大陸邊緣和中國東部邊緣海,側重末次冰盛期以來古氣候條件的演化對海洋沉積動力過程和沉積物成岩過程的影響機制。
研究興趣
(1)海洋沉積物的源-匯過程。重點示蹤陸源物質從陸地到深海的路徑(例如泥質沉積和濁流沉積),揭示與之相關的沉積動力過程。
(2)全球季風系統演化的驅動機制。主要利用海洋沉積物的物理特徵和化學組成等信息,揭示高低緯度驅動力在不同時間尺度對季風區降水的控制機制。
(3)沉積環境對海洋沉積物成岩過程的控制作用。主要利用沉積物和孔隙水數據,揭示沉積環境對海洋C-S-Fe生物地球化學行為的約束機制。
(4)地質歷史中海洋(海相)沉積物的沉積、成岩過程。主要利用海相碳酸鹽岩或者黑色頁岩重建地球系統演化關鍵時期的沉積環境。

學術成果

科研項目
[1].2023.1-2026.12 國家自然科學基金面上項目:末次冰消期以來浙閩沿岸泥質沉積物內活性鐵源匯過程及環境回響(42276060)
[2].2022.1-2024.12 山東省優秀青年基金項目:海洋沉積學編號(ZR2021YQ26)
[3].2020.1-2023.12國家自然科學基金面上項目:東海內陸架沉積物中自生黃鐵礦的形成機制和對環境演化的回響(41976053)
[4].2019.12.-2021.11青島海洋科學與技術試點國家實驗室海洋地質過程與環境功能實驗室創新團隊建設資助項目:東海泥質區自生黃鐵礦對末次冰消期以來沉積環境演化的回響機制(MGQNLM-TD201901)
[5].2017.1-2019.12國家自然科學基金青年基金:全新世浙閩泥質沉積體物源示蹤及其古氣候意義(41606062)
[6].2016.5-2017.10中國博士後科學基金面上項目:全新世東海泥質沉積自生黃鐵礦和石膏的成因及其地質意義(2016M592257)
代表性SCI論文
2023年
[1].Liu, X.T.*, Gu Y., Dong J., Li A.C.*, Zhuang G.C., Wang H.J., 2023. Iron-bearing minerals indicate sea-level rise of the East China Sea inner shelf since the last deglaciation. Science Bulletin 68, 364-366.
[2].Liu, X.T.*, Fan, D.D., Xu, F.J. Liu, J.P., 2023. Sedimentation on the continental margins: from modern processes to deep-time records, Frontiers in Earth Science 10, 1048801.
[3].Lai, W.B., Liu, X.T.*, Tian, J.W., Wang, H.J., Zhang, J., Huang, J., Wan, S.M., 2023. Mineralogy of sediments in the Mariana Trench controlled by environmental conditions of the West Pacific since the Last Glacial Maximum. Journal of Asian Earth Sciences 245, 105553.
[4].Zhang, M.Y., Liu, X.T.*, Xu, F.J.*, Li, A.C., Gu, Y., Chang, X., Zhuang, G.C., Zhang, K.D., Bi, N.S., Wang, H.J., 2023. Organic carbon deposition on the inner shelf of the East China Sea constrained by sea-level and climatic changes since the last deglaciation. Journal of Ocean University of China, DOI:10.1007/s11802-023-5476-x
2022年
[5].Liu, X.T.*, Zhang M.Y., Li A.C., Dong, J., Zhang, K.D., Gu Y., Chang, X., Zhuang, G.C., Li, Q., Wang, H.J., 2022. Sedimentary pyrites and C/S ratios of mud sediments on the East China Sea inner shelf indicate late Pleistocene-Holocene environmental evolution.  Marine Geology 450, 106854.
[6].Chang, X., Liu, X.T.*, Wang H.J., Zhuang, G.C., Ma, Z.X., Yu, J.J., Chen, J.*, 2022. Depositional control on the sulfur content and isotope of sedimentary pyrite from the southeast coast of China since MIS5. Frontier in Marine Science 9, 1005663.
[7].Miao, X.M., Liu, X.T.*, Li., Q.*, Li, A., Cai, F., Kong, F.X., Zhuang, G.C., Wang, H.J., 2022. Porewater geochemistry indicates methane seepage in the Okinawa Trough and its implications for the ancient carbon cycle of the subtropical West Pacifica. Palaeogeography, Palaeoclimatology, Palaeoecology 607, 111266.
[8].Li, D.Y.*, Liu, X.T.*, Cheng, H.G., Liang, J., Xu, S.J., Dong, G., Li, C.Y., Jiang, X.D., 2022. Development of submarine canyons on the continental slope of the Okinawa Trough with potential origin related to methane seepage. Ore Geology Reviews 149, 105088.
[9].Dong, J., Shi, X.F.*, Gong, X.*, Astakhov, S.A., Hu, L.M., Liu, X.T., Yang, G., Wang, Y.X., Vasilenko, Y., Qiao, S.Q., Bosin, A., Lohmann, G., 2022. Enhanced Arctic sea ice melting controlled by larger heat discharge of Mid-Holocene rivers. Nature Communications 13, 5368.
[10].Mao, S.H., Zhang, H.H., Zhuang, G.C.*, Li, X.J., Liu, Q., Zhou, Z., Wang, W.L., Yang C., Lu, K.Y., Liu, X.T., Montgomery, A., Joye, B.S., Zhang, Y.Z., Yang. G.P.*, 2022. Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications 13, 7309
[11].Miao, X.M., Feng, X.L.*, Li, J.R., Liu, X.T., Liang, J.Q., Feng, J.X., Xiao, Q.W., Dan, X.P., Wei, J.G.*, 2022. Enrichment mechanism of trace elements in pyrite under methane seepage Geochemical Perspectives Letters 21, 18-22.
[12].Ma, Z.X.*, Hu, S.X., Wu, H.C., Liu, X.T., Zhou, C.Y., Wen, W., Zhang, Q.Y., Huang, J.Y., Min, X. 2022. High productivity promoted exceptional fossil preservation of the Luoping biota during the early Middle Triassic, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 607, 111286.
[13].Xu, F.J., Hu, B.Q.*, Zhao, J.T., Liu, X.T., Cui, R.Y., Ding, X., Wang, G.F., Huang, J.P., 2022. Topographic and climatic control on chemical weathering of mountainous riverine sediments of Hainan Island, South China Sea. Frontiers in Earth Science 9, 770236.
[14].Miao, X.M., Feng, X.L.*, Hu, L.M., Li, J.R., Liu, X.T., Wang, N., Xiao, Q.W., Wei, J.G.*, 2022. Coupled δ15NTN and δ13CTOC insights into methane seepage activities in bulk marine sediments of the Qiongdongnan Basin, South China Sea. Journal of Ocean University of China 21, 1495-1503.
[15].谷玉, 劉喜停*, 吳曉, 王愛美, 畢乃雙, 王厚傑, 2022. 山東半島全新世泥質區近岸沉積過程與沉積記錄. 古地理學報, 24, 164-179.
[16].袁媛, 莊光超*, 毛士海, 劉佳睿, 劉喜停, 楊桂朋, 2022. 海洋環境中乙烷和丙烷的分布及生物轉化. 地球科學進展, 37, 370-381.
[17].董宏坤, 萬世明*, 劉喜停, 2022. 海洋沉積物早期成岩作用研究進展. 沉積學報, 40, 1172-1187.
2021年
[18].Liu, X.T.*, Zhang M.Y., Li A.C., Fan, D.D., Dong, J., Jiao C.Q., Chang, X., Gu Y., Zhang, K.D., Wang, H.J., 2021. Depositional control on carbon and sulfur preservation onshore and offshore Oujiang Estuary: implications for C/S ratio as a salinity indicator. Continental Shelf Research 227, 104510.
[19].Xu, F.J., Dou, Y.G.*, Zhao, J.T., Li, J., Liu, X.T., Xu, K.H., Ca, F., Wen, Z.H., Chen, X.H., 2021. Low-latitude control on sea surface temperatures in the middle Okinawa Trough over the last 3.6 kyr. Geo-Marine Letters 41, 39.
[20].Miao, X.M., Feng, X.L.*, Liu, X.T., Li, J.R., Wei, J.G.*, 2021. Effects of methane seepage activity on the morphology and geochemistry of authigenic pyrite. Marine and Petroleum Geology 133, 105231.
[21].Zhang, K.D., Li A.C.*, Liu, X.T., Chen, M.T., Lu, J., Zhang, J., Wang, H.L., 2021. Heavy mineral record from the East China Sea inner shelf: implications for provenance and climate changes over the past 1500 years. Continental Shelf Research 226, 104488.
[22].Xu, F.J., Hu, B.Q.*, Zhao, J.T., Liu, X.T., Xu, K.H., Xiong, Z.F., Wang, F.F., Ding, X., Li, Q., Guo, J.W., 2021. Provenance and weathering of sediments in the deep basin of the northern South China Sea during the last 38 kyr. Marine Geology 440, 106602.
[23].Mao, S.H., Zhuang, G.C.*, Liu, X.W., Jin, N., Zhang, H.H.*, Montgomery, A., Liu, X.T., Yang, G.P., 2021. Seasonality of dimethylated sulfur compounds cycling in north China marginal seas. Marine Pollution Bulletin 170, 112635.
[24].Dong, J., Li, A.C.*, Lu, Z.Y.*, Liu, X.T., Wan, S.M., Yan, H., Yu, Z.J., Feng, X.J., Shi, X.F., 2021. Millennial-scale interaction between the East Asian winter monsoon and El Niñorelated tropical Pacific precipitation in the Holocene. Palaeogeography Palaeoclimatology, Palaeoecology 573, 110442.
[25].Ma, Z.X.*, Hu, S.X., Liu, X.T., Zhou, C.Y., Wen, W., Zhang, Q.Y., Huang, J.Y., Min, X., 2021. The link between exceptional fossil preservation and paleoredox conditions in the Middle Triassic Luoping Biota from South China. Geological Journal 56, 6231-6244.
[26].Wu, Y.C., Li, J.L., Wang, J., Zhuang, G.C., Liu, X.T., Zhang, H.H.*, Yang, G.P., 2021. Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea. Environmental Pollution 270, 116305.
[27].張明宇, 常鑫, 胡利民, 畢乃雙, 王厚傑, 劉喜停*, 2021. 東海內陸架有機碳的源-匯過程及其沉積記錄. 沉積學報, 39, 593-609.
[28].龔承林*,齊昆,徐傑,劉喜停,王英民,2021. 深水源-匯系統對多尺度氣候變化的過程回響與反饋機制. 沉積學報 39, 231-252.
2020年
[29].Liu, X.T.*, Li, A.C.*, Fike, D., Dong, J., Xu, F.J., Zhuang, G.C., Fan, D.D., Yang, Z.S., Wang, H.J., 2020. Environment evolution of the East China Sea inner shelf and its constraint on pyrite sulfur contents and isotopes since the last deglaciation. Marine Geology 429, 106307.
[30].Dong, J., Li, A.C*., Liu, X.T., Wan, S.M., Xu, F.J., Shi, X.F., 2020. Holocene climate enhances the spatial-temporal evolution of mud sediment on the East China Sea shelf. Journal of Geophysical Research: Earth Surface 125, e2020JF005731.
[31].Pei, W.Q., Wan, S.M.*, Clift, P. Dong, J., Liu, X.T., Lu, J., Tan, Y., Shi, X.F., Li, A.C., 2020. Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP. Quaternary Science Reviews 230, 106165.
[32].常鑫, 張明宇,谷玉, 王厚傑, 劉喜停*, 2020. 黃、東海陸架泥質區自生黃鐵礦成因及其控制因素. 地球科學進展, 35, 1306-1320.
[33].劉喜停*, 李安春, 馬志鑫, 董江, 張凱棣, 徐方建, 王厚傑, 2020. 沉積過程對自生黃鐵礦硫同位素的約束. 沉積學報38, 124-137.
2019年
[34].Liu, X.T.*, Fike, D., Li, A.C.*, Dong, J., Xu, F.J., Zhuang, G.C., Rendle-Bühring, R., Wan, S.M., 2019. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology 505, 66-75.
[35].Ma, Z.X.*, Liu, X.T., Yu, W.C., Du, Y.S., Du, Q.D. 2019. Redox conditions and manganese metallogenesis in the Cryogenian Nanhua Basin: Insight from the basal Datangpo Formation of South China, Palaeogeography Palaeoclimatology Palaeoecology 529, 39-52.
[36].Zhang, K.D., Li, A.C.*, Huang, P., Lu, J., Liu, X.T., Zhang, J. 2019. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf. Sedimentary Geology 384, 50-59.
[37].馬志鑫, 羅茂金*, 劉喜停, 任京偉, 黃騰, 孫志明, 2019. 四川南江地區上震旦統燈影組混積層系特徵及成因. 沉積與特提斯地質 39, 1-13.
2018年
[38].Liu, X.T.*, Li, A.C.*, Dong, J., Zhuang, G.C., Xu, F.J., Wan, S.M., 2018. Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf. Marine Chemistry 205, 90-97.
[39].Liu, X.T.*, Rendle, R., Henrich, R., 2018. High-and low-latitude forcing of the East African climate since the LGM: Inferred from the elemental composition of marine sediments off Tanzania. Quaternary Science Reviews196, 124-136.
[40].Liu, X.T.*, Li, A.C., Dong, J., Lu, J., Huang, J., Wan, S.M., 2018. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter. Journal of Asian Earth Sciences 151, 1-15.
[41].Xu, F.J., Hu, B.Q.*, Dou, Y.G., Song, Z.J., Liu, X.T., Yuan S.Q., Sun, Z.L., Li, A.C., Yin, X.B., 2018. Prehistoric heavy metal pollution on the continental shelf off Hainan Island, South China Sea: From natural to anthropogenic impacts around 4.0 kyr BP. The Holocene 28, 455-463.
[42].Dong, J., Li, A.C.*, Liu, X.T., Wan, S.M., Feng, X.G., Lu, J., Pei, W.Q., Wang, H.L. 2018. Sea-level oscillations in the East China Sea and their implications for global seawater redistribution during 14.0-10.0 kyr BP. Palaeogeography Palaeoclimatology Palaeoecology 511, 298-308.
[43].馬志鑫, 羅茂金*, 劉喜停, 孫志明, 2018. 四川南江坪河石墨礦碳質來源及成礦機制. 地質科技情報 37, 134-139.
[44].朱瀟, 蔣富清*, 馮旭光, 董江, 劉喜停, 王紅莉, 李安春, 2018. 菲律賓海沉積物中石英的來源及其搬運方式. 海洋與湖沼 49, 1190-1202.
[45].盧健, 李紹科, 李安春*, 劉喜停, 董江, 張晉, 2018. CT掃描方法在東海泥質沉積物孔隙度分析中的套用與對比. 海洋地質與第四紀地質 38, 198-207.
2017年
[46].Liu, X.T.*, Rendle-Bühring, R., Kuhlmann, H., Li, A.C., 2017. Two phases of the Holocene East African Humid Period: Inferred from the high-resolution geochemical record off Tanzania. Earth and Planetary Science Letters 460, 123-134.
[47].Liu, X.T.*, Rendle-Bühring, R., Henrich, R., 2017. Geochemical composition of Tanzanian shelf sediments indicates Holocene climatic and sea-level changes. Quaternary Research 87, 442-454.
[48].Sun, Y.D.*, Liu, X.T., Yan, J.X., Li, B., Chen, B., Bond, D., Joachimski, M., Wignall, P., Wang, X., Lai, X.L.*, 2017. Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China. Palaeogeography Palaeoclimatology Palaeoecology 465, 42-63.
[49].Xu, F.J., Hu, B.Q.*, Dou, Y.G., Liu, X.T., Wan, S.M., Xu, Z.K., Tian, X., Liu, Z.Q., Yin, X.B., Li, A.C., 2017. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene. Continental Shelf Research 144, 21-30.
2016年
[50].Liu, X.T.*, Rendle-Bühring, R., Henrich, R., 2016. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene. Quaternary Science Reviews 133, 15-27.
[51].Liu, X.T.*, Rendle-Bühring, R., Meyer, I., Henrich, R., 2016. Holocene shelf sedimentation patterns off equatorial East Africa constrained by climatic and sea-level changes. Sedimentary Geology 331, 1-11.
[52].Huang, J.*, Wan, S.M., Xiong, Z.F., Zhao, D.B., Liu, X.T., Li, A.C., Li, T.G., 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography Palaeoclimatology Palaeoecology 441, 871-881.
[53].馬志鑫*, 羅亮, 劉喜停, 劉偉, 孫志明, 2016. 重慶秀山小茶園錳礦南華紀大塘坡組古環境條件分析. 古地理學報 18, 473-486.
2015年以前
[54].Liu, X.T., Yan, J.X.*, Xue, W.Q., Ma, Z.X., Li, B., 2014. The geobiological formation process of the marine source rocks in the Middle Permian Chihsia Formation of South China. Science China: Earth Sciences 57, 957-964.
[55].劉喜停, 顏佳新*, 馬志鑫, 薛武強, 2014. 華南棲霞組灰岩-泥灰岩韻律層的成因. 地球科學:中國地質大學學報, 39, 155-164.
[56].劉喜停, 顏佳新*, 薛武強, 馬志鑫, 李波, 2014. 華南中二疊統棲霞組海相烴源岩形成的地球生物學過程. 中國科學: 地球科學 44, 1185-1192.
[57].劉喜停, 顏佳新*, 薛武強, 2012. 灰岩-泥灰岩韻律層的差異成岩作用. 地質論評 58, 627-635.
[58].劉喜停, 顏佳新*, 2011. 鐵元素對海相沉積物早期成岩作用的影響. 地球科學進展 26, 482-492.
[59].劉喜停, 馬志鑫, 顏佳新*, 2010. 揚子地區晚二疊世吳家坪期沉積環境及烴源岩發育的控制因素. 古地理學報 12, 244-252.
[60].劉喜停, 顏佳新*, 2009. 海水化學演化對生物礦化的影響綜述. 古地理學報 11, 446-454.
[61].李波, 顏佳新*, 劉喜停, 薛武強, 2010. 白雲岩有機成因模式: 機制, 進展與意義. 古地理學報 12, 699-710.
[62].薛武強, 劉喜停, 顏佳新*, 馬志鑫, 2015. 重慶南川地區中二疊統茅口組眼球狀灰岩成因. 地質科學 50, 1001-1013.
[63].馬志鑫*, 羅亮, 李波, 劉喜停, 2015. 黔東下寒武統清虛洞組地球化學特徵及其對沉積環境演化的指示. 地質科技情報 34, 71-77.

相關詞條

熱門詞條

聯絡我們