凌黎明,男,漢族,1985年10月生,湖南衡陽人,博士,華南理工大學數學學院教授。
基本介紹
- 中文名:凌黎明
- 民族:漢族
- 出生日期:1985年10月
- 畢業院校:北京套用物理與計算數學研究所
- 學位/學歷:博士
- 職業:教師
- 專業方向:孤立子理論中Darboux 變換與反散射方法; 非線性波理論
- 籍貫:湖南衡陽
- 任職院校:華南理工大學
人物經歷,教育教學,研究方向,學術成果,代表性論文,學術專著,科研項目,
人物經歷
2010.09-2013.06:北京套用物理與計算數學研究所, 博士
2013.07-2018.03 華南理工大學大學數學學院, 講師/副教授
2018.04-至今 華南理工大學大學數學學院, 教授
2014.07-2014.08 訪問復旦大學上海數學中心,訪問學者
2017.08-2018.08 訪問 密西根大學 數學系, 訪問學者
教育教學
主講課程:《線性代數》,《機率統計》
研究方向
1 可積非線性偏微分方程的極限動力學行為分析(無窮階或無窮多孤立子類型解的分析);
2 非線性波理論(可積湍流和怪波等);
3 量子/流體物理,非線性光學中的非線性激發模式及其成因;
4 解的穩定性分析。
學術成果
代表性論文
1 Deniz Bilman, Liming Ling and Peter D. Miller, Extreme Superposition: Rogue Waves of Infinite Order and the Painlevé-III Hierarchy, Duke Mathematical Journal, 169, 671-760, 2020
2 Bao-Feng Feng, Liming Ling and Daisuke A. Takahashi, Multi-breathers and high order rogue waves for the nonlinear Schrödinger equation on the elliptic function background, Stud. Appl. Math., 144, 46-101, 2020
3 Yan-Hong Qin, Li-Chen Zhao* and Liming Ling*, Nondegenerate bound-state solitons in multicomponent Bose-Einstein condensates, Phys. Rev. E, 100, 022212 (2019) PhysRevE-2019.pdf
4 Liming Ling*, Li-Chen Zhao*, Zhan-Ying Yang, and Boling Guo. Generation mechanisms of fundamental rogue wave spatial-temporal structure. Phys. Rev. E 96, 022211 (2017)PRE8.pdf
5 Bao-Feng Feng, Liming Ling* and Zuonong Zhu, Defocusing complex short-pulse equation and its multi-dark-soliton solution, Phys. Rev. E, 93, 052227 (2016) PRE-7.pdf
6 Liming Ling, Bao-Feng Feng* and Zuonong Zhu, Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation, Physica D, 327 (2016) 13-29Phys-D.pdf
7 Li-Chen Zhao, Boling Guo, and Liming Ling*, High-order rogue wave solutions for the coupled nonlinear Schrödinger equations-II, J. Math. Phys. 57, 043508 (2016) JMP-3.pdf
8 Li-Chen Zhao, Sheng-Chang Li, and Liming Ling*, W-shaped solitons generated from a weak modulation in the Sasa-Satsuma equation, Phys. Rev. E, 93, 032215 (2016) PRE6.pdf
9 Liming Ling, Li-Chen Zhao and Boling Guo, Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations, Nonlinearity, 28 3243-3261 (2015) Nonlinearity.pdf 入選ESI高被引論文,獲得由倫敦數學會和英國物理學會聯合頒發的 2018年度 中國高被引作者獎
10 Liming Ling and Li-Chen Zhao*, Integrable pair-transition-coupled nonlinear Schrödinger equations, Phys. Rev. E, 92, 022924 (2015) PRE5.pdf
11 Dongfen Bian, Boling Guo, and Liming Ling*,High-Order Soliton Solution of Landau-Lifshitz Equation, Stud. Appl. Math. 134:181–214 (2015) SAPM-2.pdf
12 Li-Chen Zhao, Sheng-Chang Li*, and Liming Ling*, Rational W-shaped solitons on a continuous-wave background in the Sasa-Satsuma equation, Phys. Rev. E, 89, 023210 (2014)PRE-4.pdf
13 Liming Ling, Boling Guo, and Li-Chen Zhao*, High-order rogue waves in vector nonlinear Schrödinger equations, Phys. Rev. E, 89, 041201(R) (2014) PRE-3.pdf
14 Liming Ling and Li-Chen Zhao*, Simple determinant representation for rogue waves of the nonlinear Schrödinger equation, Phys. Rev. E, 88, 043201 (2013) PRE-2.pdf
15 Boling Guo, Liming Ling Q. P. Liu*, High order Solutions and Generalized Darboux transformation of Derivative Schrödinger Equations, Stud. Appl. Math. 130, 317-344, (2013)
入選ESI高被引論文 Stud-in-Applied-Math.pdf
16 Boling Guo, Liming Ling, Q. P. Liu*, Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions, Phys. Rev. E 85, 026607. (2012)
入選ESI高被引論文FRE-1.pdf
17 Boling Guo, Liming Ling*, Riemann-Hilbert Approach and N-soliton Formula for Coupled Derivative Schrödinger Equation, J. Math. Phys. 53, 073506 (2012) JMP-2.pdf
18 Liming Ling and Q. P. Liu*, A long waves-short waves model: Darboux transformation and soliton solutions. J. Math. Phys. 52, 053513. (2011) JMP-1.pdf
19 Boling Guo, Liming Ling*, Rouge Wave,Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations, Chin. Phys. Lett., 28, 110202 (2011) CPL.pdf
獲得2016年度中國物理協會頒發的最有影響力論文一等獎
20 Liming Ling and Q. P. Liu*, Darboux Transformation for Two-component Derivative Nonlinear Schrödinger Equation. J. Phys. A: Math. Theor. 43, 434023 (2010) JPA:M T.pdf