偽基

偽基亦稱ψ基。拓撲空間的一類開集族。X的偽基的最小基數稱為X的偽權或ψ權,記為ψw(X)。

基本介紹

  • 中文名:偽基
  • 外文名:pseudo base
  • 領域:數學
  • 學科:拓撲學
  • 性質:一類開集族
  • 空間:拓撲空間
概念,拓撲空間,拓撲,基,

概念

偽基亦稱ψ基。拓撲空間的一類開集族。設B是拓撲空間X的開集族。若對於任意x∈X有
則稱B為X的偽基。X有偽基,若且唯若X是T1空間。X的偽基的最小基數稱為X的偽權或ψ權,記為ψw(X)。

拓撲空間

歐幾里得空間的一種推廣。給定任意一個集,在它的每一個點賦予一種確定的鄰域結構便構成一個拓撲空間。拓撲空間是一種抽象空間,這種抽象空間最早由法國數學家弗雷歇於1906年開始研究。1913年他考慮用鄰域定義空間,1914年德國數學家豪斯多夫給出正式定義。豪斯多夫把拓撲空間定義為一個集合,並使用了“鄰域”概念,根據這一概念建立了抽象空間的完整理論,後人稱他建立的這種拓撲空間為豪斯多夫空間(即現在的T2拓撲空間)。同時期的匈牙利數學家裡斯還從導集出發定義了拓撲空間。20世紀20年代,原蘇聯莫斯科學派的數學家П.С.亞里山德羅夫與烏雷松等人對緊與列緊空間理論進行了系統研究,並在距離化問題上有重要貢獻。1930年該學派的吉洪諾夫證明了緊空間的積空間的緊性,他還引進了拓撲空間的無窮乘積(吉洪諾夫乘積)和完全正規空間(吉洪諾夫空間)的概念。
20世紀30年代後,法國數學家又在拓撲空間方面做出新貢獻。1937年布爾巴基學派的主要成員H.嘉當引入“濾子”、“超濾”等重要概念,使得“收斂”的更本質的屬性顯示出來。韋伊提出一致性結構的概念,推廣了距離空間,還於1940年出版了《拓撲群的積分及其套用》一書。1944年迪厄多內引進雙緊緻空間,提出仿緊空間是緊空間的一種推廣。1945年弗雷歇又提出抽象距的概念,他的學生們進行了完整的研究。布爾巴基學派的《一般拓撲學》亦對拓撲空間理論進行了補充和總結。
此外,美國數學家斯通研究了剖分空間的可度量性,1948年證明了度量空間是仿緊的等結果。捷克數學家切赫建立起緊緻空間的包絡理論,為一般拓撲學提供了有力工具。他的著作《拓撲空間論》於1960年出版。近幾十年來拓撲空間理論仍在繼續發展,不斷取得新的成果。

拓撲

拓撲是集合上的一種結構。設T為非空集X的子集族。若T滿足以下條件:
1.X與空集都屬於T;
2.T中任意兩個成員的交屬於T;
3.T中任意多個成員的並屬於T;
則T稱為X上的一個拓撲。具有拓撲T的集合X稱為拓撲空間,記為(X,T)。
設T1與T2為集合X上的兩個拓撲。若有關係T1T2,則稱T1粗於T2,或T2細於T1.當X上的兩個拓撲相互之間沒有包含關係時,則稱它們是不可比較的。在集合X上,離散拓撲是最細的拓撲,平凡拓撲是最粗的拓撲。

基是與拓撲有關的概念。設(X,T)是拓撲空間,BT.若X的任意非空開集均可表示為B的若干個元的並,則稱B為拓撲空間(X,T)的基或拓撲T的基.拓撲空間(X,T)可以有不同的基,但由基惟一確定X上的拓撲。若基B的基數為0,則B稱為可數基。拓撲空間X的所有基的基數的最小值稱為拓撲空間X的權。

熱門詞條

聯絡我們