《二階橢圓型偏微分方程引論》是2009年3月化學工業出版社出版的圖書,作者是賈雲鋒。
基本介紹
- 書名:二階橢圓型偏微分方程引論
- 作者:賈雲鋒
- 類別:科技類圖書
- 出版社:化學工業出版社
- 出版時間:2009年3月
- 頁數:100 頁
- 開本:16 開
- 裝幀:平裝
- ISBN:9787122043436
- 叢書名:二十一世紀高等院校教材
內容簡介,目錄,
內容簡介
本書運用幾類具體的半線性橢圓型方程系統地介紹了反應擴散方程中的重要問題。主要內容包括:帶有擴散的兩物質自催化反應模型,帶有非單調反應函式的兩種群食餌-捕食模型,帶有擴散的三種群周期互惠模型,帶有擴散的三種群周期競爭模型以及這些模型解的存在性、不存在性、穩定性、分歧、先驗估計和解的漸近行為等。本書可供理工科大學數學、套用數學和其它相關專業的大學生、研究生、教師以及有關的科學工作者參考。
目錄
第一章 基本理論 1
第一節 二階偏微分方程的極值原理和上下解方法 1
第二節 特徵值問題和特徵值的變分原理 3
第三節 Banach空間上的拓撲度理論和不動點指數理論 3
第四節 Banach空間上的分歧理論和穩定性理論 4
第二章 帶有擴散的兩物質自催化反應模型 7
第一節 引言 7
第二節 正解的基本性質 8
第三節 非常數正解的不存在性 13
第四節 常數正解的穩定性 14
第五節 發自常數正解處的分歧解的存在性、唯一性及穩定性 16
第六節 非常數正解的存在性 25
第七節 全局分歧分析 30
第三章 帶有非單調反應函式的兩種群食餌-捕食模型 35
第一節 引言 35
第二節 平凡解與半平凡解的穩定性 36
第三節 發自半平凡解處的分歧解的存在性、唯一性及穩定性 38
第四節 發自平凡解處的分歧解的存在性、唯一性及穩定性 44
第五節 正解的存在性 49
第四章 帶有擴散的三種群周期互惠模型 61
第一節 引言 61
第二節 正解的存在性 63
第三節 正解的先驗估計 66
第四節 一類具體的三種群互惠平衡態模型的共存態 69
第五章 帶有擴散的三種群周期競爭模型 76
第一節 引言 76
第二節 正解的先驗估計 77
第三節 正解的漸近性 81
附錄 91
參考文獻 92