三十年來的蘇聯數學 1917-1947 複變函數論

《三十年來的蘇聯數學 1917-1947 複變函數論》是1957年科學出版社出版的圖書,作者是А·Ф·卞爾曼脫、А·И·馬爾古謝維奇 。

基本介紹

  • 書名:三十年來的蘇聯數學 1917-1947 複變函數論
  • 作者:А·Ф·卞爾曼脫、А·И·馬爾古謝維奇 
  • 譯者:陳建功
  • ISBN:9781010143154
  • 頁數:146
  • 出版社:科學出版社
  • 出版時間:1957年
  • 裝幀:21厘米
內容簡介,叢書信息,目錄,

內容簡介

本書系統介紹了全純函式的Cauchy積分理論及其套用、Weierstrass級數理論及其套用、Riemann共形映射以及函式空間等,主體內容特別是幾何函式論精練清楚,可視化較好便於理解,同時面向現代化的後續研究特別是側重於解析函式函式空間及其對信號處理的套用。

叢書信息

三十年來的蘇聯數學 (共10冊), 這套叢書還有 《三十年來的蘇聯數學 1917-1947 幾何學》,《三十年來的蘇聯數學 1917-1947 數學史》,《三十年來的蘇聯數學 1917-1947 拓撲學 描述集合編》,《三十年來的蘇聯數學 1917-1947 代數學》,《三十年來的蘇聯數學 1917-1947 近似方法》 等。

目錄

引言
第一章複數與複變函數
1.複數
2.複平面上的點集
3.複變函數
4.復球面與無窮遠點
第一章習題
第二章解析函式
1.解析函式的概念與柯西—黎曼方程
2.初等解析函式
3.初等多值函式
第二章習題
第三章複變函數的積分
1.復積分的概念及其簡單性質
2.柯西積分定理
3.柯西積分公式及其推論
4.解析函式與調和函式的關係
*5.平面向量場——解析函式的套用(一)
第三章習題
第四章解析函式的冪級數表示法
1.復級數的基本性質
2.冪級數
3.解析函式的泰勒(Taylor)展式
4.解析函式零點的孤立性及惟一性定理
第四章習題
第五章解析函式的洛朗(Laurent)展式與孤立奇點
1.解析函式的洛朗展式
2.解析函式的孤立奇點
3.解析函式在無窮遠點的性質
4.整函式與亞純函式的概念
*5.平面向量場——解析函式的套用(二)
第五章習題
第六章留數理論及其套用
1.留數
2.用留數定理計算實積分
3.輻角原理及其套用
第六章習題
第七章共形映射
1.解析變換的特性
2.分式線性變換
3.某些初等函式所構成的共形映射
4.關於共形映射的黎曼存在定理和邊界對應定理
第七章習題
第八章解析延拓
1.解析延拓的概念與冪級數延拓
2.透弧解析延拓、對稱原理
3.完全解析函式及黎曼面的概念
*4.多角形區域的共形映射
第八章習題
第九章調和函式
1.平均值定理與極值原理
2.泊松積分公式與狄利克雷問題
第九章習題
部分習題參考答案
名詞索引

相關詞條

熱門詞條

聯絡我們