《線性代數》導學備考一書通

《線性代數》導學備考一書通

《《線性代數》導學備考一書通》是化學工業出版社出版的圖書,作者是崔麗鴻。《《線性代數》導學備考一書通》的特色是新穎、全面、精準、實用、高效,可作為各類大中專在校學生的參考書,考研學子的備考複習書,高校教師的習題課參考書,考研輔導人員的考案參考書。

基本介紹

  • 書名:《線性代數》導學備考一書通
  • 作者崔麗鴻
  • ISBN:9787122103598
  • 定價:36.00元
  • 出版社化學工業出版社 
  • 出版時間:2011年4月1日
  • 開本:16開
內容簡介,圖書目錄,

內容簡介

《《線性代數》導學備考一書通》內容簡介:“線性代數”是大學教學教育的重要基礎課,也是大多數專業研究生入學考試的必考科目。 《《線性代數》導學備考一書通》分為三大部分:基礎篇、提高篇和應試篇。基礎篇包括:複習引導、基本概念、基本題型;提高篇包括:考點歸納、考點解讀、命題趨勢、難點剖析、點擊考點+方法歸納;應試篇包括:線性代數複習點睛、2011年研究生入學試題詳解、三套模擬考試題及部分答案。

圖書目錄

第一章行列式1
複習導學1
1. 行列式的概念1
【基本題型1】按定義計算行列式2
【基本題型2】按對角線法則計算二、三階行列式2
2. 行列式的性質2
【基本題型3】按行列式的性質計算行列式2
3. 行列式按行(或列)展開定理3
【基本題型4】有關餘子式、代數餘子式及其重要結論的題目4
【基本題型5】按照性質和按行展開定理計算較低階的行列式6
【基本題型6】確定用行列式表示的多項式f(x)中關於x的各次冪前的係數6
4. 常用的特殊行列式7
【基本題型7】一般的n階行列式的計算8
第二章矩陣16
複習導學16
1. 矩陣的概念16
2. 矩陣相等16
3. 矩陣運算16
4.矩陣運算的性質17
5.轉置矩陣17
【基本題型1】矩陣的基本運算17
6. 特殊矩陣及其性質 18
【基本題型2】有關特殊矩陣的運算19
7.方陣19
【基本題型3】有關方陣的性質19
【基本題型4】矩陣運算規律與數運算規律的區別19
8. 伴隨矩陣20
9. 逆矩陣20
【基本題型5】利用伴隨矩陣法求較低階矩陣的逆20
【基本題型6】判定或證明抽象矩陣可逆並求逆21
【基本題型7】求抽象矩陣的逆22
【基本題型8】有關伴隨矩陣的命題22
10.分塊矩陣24
【基本題型9】分塊矩陣的計算24
【基本題型10】分塊矩陣的運用26
11.初等變換27
12.初等矩陣28
13.初等矩陣的套用29
【基本題型11】將矩陣寫成初等矩陣乘積形式29
【基本題型12】利用初等變換法求矩陣的逆30
14. 矩陣的秩31
【基本題型13】按定義求矩陣的秩31
15.矩陣秩的基本結論31
【基本題型14】利用秩的基本結論解題31
16.用初等變化法求矩陣A的秩32
【基本題型15】用初等變換法求矩陣的秩32
第三章向量35
複習導學35
1. n維向量的概念35
2. n維向量的線性運算 35
3. 向量加法和數量乘積運算滿足以的運算性質35
4. 向量、向量組與矩陣35
【基本題型1】向量的線性運算36
5.一個向量與一個向量組之間的線性表示36
【基本題型2】利用構成矩陣的秩來判定一個向量能否由另一向量組線性表示37
6. 向量組的線性相關與線性無關38
【基本題型3】有關抽象向量組的線性相關性的證明38
【基本題型4】有關分量具體的向量組的線性相關性的判定38
7. 線性相關性的重要性質及定理39
【基本題型5】有關線性相關性的概念和重要定理的題目39
8.兩個向量組的線性表示及其等價42
9. 兩個向量組線性相關性的性質定理42
【基本題型6】有關兩個向量組之間的線性表示及其相關性的判定42
10. 向量組的極大無關組43
11. 向量組的秩44
12. 兩個向量組秩之間的關係44
13. 向量組的秩和矩陣的秩的關係44
14. 用初等變換法求向量組的秩和極大無關組44
【基本題型7】求一個向量組的極大無關組並表示其餘向量44
【基本題型8】有關等價的向量組的證明45
【基本題型9】求向量組的秩46
【基本題型10】有關抽象向量組或矩陣秩的不等式的證明46
【基本題型11】關於抽象向量組和矩陣秩的等式的證明47
15. 向量的內積、長度、夾角50
16.Schmidt正交化、單位化50
17.正交矩陣51
18. 向量空間的定義、基與維數51
【基本題型12】求解空間的一組標準正交基51
【基本題型13】有關向量空間的維數52
19. 向量在基下的坐標52
【基本題型14】求向量在基下的坐標52
20. 兩個向量組之間的過渡矩陣53
【基本題型15】求兩組基之間的過渡矩陣53
第四章線性方程組55
複習導學55
1. m個方程n個未知量的線性方程組的一般形式55
2. 齊次線性方程組的基礎解系55
【基本題型1】有關基礎解系的概念55
3. 線性方程組解的性質和結構56
【基本題型2】有關方程組解的性質和結構56
4. 線性方程組解的判定59
【基本題型3】有關解的判定定理59
5.線性方程組求解的初等變換法61
【基本題型4】求(非)齊次方程組的基礎解系和通解61
6.線性方程組求解的克萊姆法則62
【基本題型5】按照克萊姆法則求方程組的解63
7. 線性方程組的求解和討論65
【基本題型6】含參數方程組解的討論65
【基本題型7】求齊次線性方程組的基礎解系、通解67
【基本題型8】求非齊次方程組的通解68
【基本題型9】已知齊次方程組的解,反求係數矩陣69
第五章特徵值與相似對角化71
複習導學71
1?特徵值和特徵向量的定義71
【基本題型1】有關特徵值和特徵向量定義的題目71
2?特徵值和特徵向量的計算步驟71
【基本題型2】求具體矩陣的特徵值和特徵向量72
3?特徵值和特徵向量的性質72
【基本題型3】有關特徵值和特徵向量性質的題目73
【基本題型4】求抽象矩陣的特徵值和特徵向量74
4?相似矩陣的概念76
5?相似矩陣的性質76
【基本題型5】有關相似矩陣性質的題目76
6?矩陣可以對角化的條件77
【基本題型6】有關兩方陣相似的判定78
7?矩陣對角化的方法78
【基本題型7】有關矩陣可對角化的判定79
【基本題型8】已知矩陣的特徵值和特徵向量,反求矩陣81
8?n階實對稱矩陣A的主要結論82
【基本題型9】有關實對稱矩陣的性質82
【基本題型10】求正交矩陣Q,將實對稱矩陣化為對角陣84
【基本題型11】有關特徵值、特徵向量的性質及其套用86
第六章二次型89
複習導學89
1?二次型的概念89
【基本題型1】寫出二次型的矩陣89
【基本題型2】已知二次型的秩,反求其參數90
2?線性變換91
3?矩陣的契約91
【基本題型3】判斷兩個矩陣是否契約91
4?二次型的標準形92
【基本題型4】二次型的最大值問題92
5?進一步的結論93
【基本題型5】已知二次型線性變換前後的形式,反求其中的參數93
6?化二次型為標準形的配方法93
【基本題型6】用配方法化二次型化為標準形或規範形94
7?化二次型為標準形的正交變換法95
【基本題型7】求正交變換,將二次型化為標準形或規範形95
8?正定二次型和正定矩陣98
【基本題型8】判定二次型或矩陣的正定性98第七章行列式102
考點歸納102
考點解讀102
★ 命題趨勢102
★ 難點剖析102
1?n階行列式的計算102
2? 抽象型行列式的計算104
3? 證明行列式|A|=0的方法104
4? 分塊矩陣的行列式104
點擊考點+方法歸納104
有關行列式計算的題目104
【考點1】元素具體的含文字的低階行列式的計算104
【考點2】含在矩陣方程中的方陣的行列式的計算106
【考點3】抽象矩陣的行列式求值107
【考點4】高階行列式的計算111
有關行列式的證明題112
【考點5】抽象行列式等於零或不等於零的判定或證明112
【考點6】分塊矩陣的行列式114
第八 章矩陣116
考點歸納116
考點解讀116
★ 命題趨勢116
★ 難點剖析116
1? 兩個矩陣可乘的條件116
2? 矩陣乘法不滿足交換律和消去律116
3? 解矩陣方程116
4? 與初等變換有關的命題117
5? 與伴隨矩陣有關的命題117
6? 矩陣秩的計算與證明117
7?分塊矩陣的運算118
點擊考點+方法歸納119
有關逆矩陣的題目119
【考點1】隱含矩陣可逆,求逆矩陣119
【考點2】判定或證明矩陣可逆120
有關矩陣的乘法運算122
【考點3】可交換矩陣的運算122
【考點4】求方陣的冪An122
【考點5】解矩陣方程125
有關矩陣的初等變換和初等矩陣的命題129
【考點6】求初等變換中的變換矩陣129
【考點7】求由初等變換得到的矩陣的有關性質130
與伴隨矩陣、轉置矩陣等有關的命題131
【考點8】利用伴隨矩陣萬能公式求其逆、行列式等131
有關矩陣的秩135
【考點9】求元素具體但含參數的矩陣的秩或其反問題135
【考點10】求抽象矩陣的秩136
【考點11】矩陣秩的證明138
【考點12】有關秩為1的矩陣140
第九章向量142
考點歸納142
考點解讀142
★命題趨勢142
★難點剖析142
1? 關於向量組的線性相關有如下等價命題142
2? 關於向量組的線性無關有如下等價命題142
3? 與向量組個數和維數有關的線性相關性結論143
4? 關於線性表示的有關結論143
5? 關於向量組的秩的有關結論143
6? 關於向量組的基或其他143
點擊考點+方法歸納144
有關向量組的計算題型144
【考點1】 已知向量組間的線性表示關係,確定其中的參數144
【考點2】已知向量組的線性相關性,確定其中的參數,並求一個極大無關組149
【考點3】求向量在基下的坐標151
【考點4】求兩組基之間的過渡矩陣151
【考點5】求解空間的一組標準正交基152
有關向量組的證明題型153
【考點6】判定或證明抽象向量組的線性表示153
【考點7】抽象的向量組的線性相關性的證明154
【考點8】抽象的向量組的秩的證明156
有關向量的客觀題型156
【考點9】有關向量組的線性相關性的判定156
【考點10】與矩陣有關的向量組的相關性的判定159
【考點11】與線性表示有關的線性相關性的判定161
【考點12】已知數字向量組線性相關,確定其中的參數163
第十章線性方程組165
考點歸納165
考點解讀165
★命題趨勢165
★難點剖析165
1? n元線性方程組的三種等價的表達形式165
2? 線性方程組解的性質166
3? m個方程n個未知量的齊線性方程組解的判定166
4? m個方程n個未知量的非齊線性方程組解的判定166
5? 對含參數的線性方程組,一般有以下兩種題型166
6? 對抽象方程組的求解166
7? 尋找或證明向量組是某方程組的基礎解系的3個關鍵點167
8? 兩個線性方程組解(都是齊次方程組或都是非齊次方程組)之間的關係167
9? 求方程組(Ⅰ)Am×tX=α和方程組(Ⅱ)Bt×nX=β的公共解的一般方法167
點擊考點+方法歸納167
有關抽象方程組的求解167
【考點1】抽象方程組的求解167
有關含參數的方程組的討論或求解172
【考點2】討論齊次方程組中的參數,使得方程組只有零解或非零解,並在有非零解時求其通解.172
【考點3】討論非齊次方程組中的參數,使得方程組無解或有解,並在有解時求其通解178
【考點4】已知方程組的解的情況,反求其中的參數並求解181
有關兩個方程組解之間的關係184
【考點5】有關兩方程組 (Ⅰ)Am×tX=α和 (Ⅱ)Bt×nX=β的公共解問題184
【考點6】已知兩方程組同解,反求其中的參數186
【考點7】判斷兩個抽象的矩陣方程解之間的關係188
有關基礎解系的命題189
【考點8】已知一組向量已是基礎解系,證明或判斷其線性組合構成的另一組向量也是基礎解系189
【考點9】已知非齊次方程組解的情況,尋求對應齊次方程組的基礎解系191
有關AB=0的命題192
【考點10】已知AB=0,確定A或B中的參數192
【考點11】已知AB=0,確定矩陣A或B的秩193
【考點12】已知AB=0,確定A或B的行列式值是否為零194
【考點13】已知AB=0,確定A或B的行向量組或列向量組的相關性195
第十一章特徵值與矩陣的相似對角化197
考點歸納197
考點解讀197
★命題趨勢197
★難點剖析197
1?求矩陣A的特徵值和特徵向量的一般方法197
2?有關的重要結論197
3?求與A相關矩陣的特徵值和特徵向量198
4?兩矩陣相似的必要條件198
5?證明或判斷矩陣相似及其逆問題198
6?可對角化的判定及其逆問題198
7?實對稱矩陣的主要性質199
點擊考點+方法歸納199
有關特徵值和特徵向量的計算199
【考點1】求具體矩陣的特徵值和特徵向量199
【考點2】求抽象矩陣的特徵值203
【考點3】求抽象矩陣的特徵向量204
與特徵值、特徵向量有關的逆的問題204
【考點4】已知矩陣的特徵值、特徵向量,反求其中的參數204
【考點5】已知矩陣的特徵值、特徵向量,反求矩陣206
有關兩矩陣的相似問題207
【考點6】兩具體的矩陣相似,確定其中的參數207
【考點7】已知抽象矩陣和一個向量組之間的關係,求其相似對角矩陣等208
有關矩陣的對角化的題目211
【考點8】確定參數的值,使得有關矩陣可對角化,並求相應的可逆矩陣和對角矩陣211
【考點9】確定參數的值後,討論矩陣是否可對角化213
有關實對稱矩陣的題目215
【考點10】已知實對稱矩陣的全部特徵值和部分特徵向量,反求矩陣A215
【考點11】求正交矩陣,化實對稱矩陣A為對角矩陣217
【考點12】特徵值、特徵向量的性質及其套用223
【考點13】有關兩矩陣相似的必要條件225
有關特徵值、特徵向量和相似矩陣的證明226
【考點14】兩相關矩陣的特徵值與特徵向量間的關係226
【考點15】兩相關矩陣的特徵值與特徵向量間的關係226
第十二章二次型228
考點歸納228
考點解讀228
★命題趨勢228
★難點剖析228
1?化二次型為標準形的定理228
2?求二次型的標準形的方法228
3. 關於二次型的唯一性228
4?關於二次型的慣性指數和秩229
5?二次型的規範形229
6?契約變換與契約矩陣229
7?契約矩陣與相似矩陣229
8?正定二次型及其對應矩陣的正定性229
點擊考點+方法歸納230
有關二次型的標準化問題230
【考點1】先確定二次型中的參數,再求正交變換或正交變換矩陣,最後將含參數的二次型化為標準形230
【考點2】求正交變換矩陣233
有關二次型對應矩陣的命題237
【考點3】求含參數的二次型所對應矩陣的特徵值237
【考點4】求抽象的二次型所對應的矩陣239
有關二次型或矩陣的正定241
【考點5】判別或證明二次型的正定241
【考點6】證明矩陣的正定242
【考點7】有關正定的綜合題244
契約變換與契約矩陣245
【考點8】契約變換與契約矩陣245
第十三章線性代數與幾何的關係247
考點歸納247
考點解讀247
★命題趨勢247
★難點剖析247
1?線、面間的位置關係和方程組的轉化247
2?常見的二次曲面的標準方程及其圖形248
3?常見的二次曲面的秩248
點擊考點+方法歸納248
【考點1】直線或平面間的位置關係與向量組的相關性或矩陣的秩的相互轉化248
【考點2】二次型的標準形表示何種曲面253
【考點3】利用二次曲面的圖形確定二次型的秩、正負特徵值個數或正負慣性指數255
線性代數複習點睛257
2011年研究生入學考試真題258
三套自我檢查題及答案258
參考文獻266 第一章行列式1
複習導學1
1. 行列式的概念1
【基本題型1】按定義計算行列式2
【基本題型2】按對角線法則計算二、三階行列式2
2. 行列式的性質2
【基本題型3】按行列式的性質計算行列式2
3. 行列式按行(或列)展開定理3
【基本題型4】有關餘子式、代數餘子式及其重要結論的題目4
【基本題型5】按照性質和按行展開定理計算較低階的行列式6
【基本題型6】確定用行列式表示的多項式f(x)中關於x的各次冪前的係數6
4. 常用的特殊行列式7
【基本題型7】一般的n階行列式的計算8
第二章矩陣16
複習導學16
1. 矩陣的概念16
2. 矩陣相等16
3. 矩陣運算16
4.矩陣運算的性質17
5.轉置矩陣17
【基本題型1】矩陣的基本運算17
6. 特殊矩陣及其性質 18
【基本題型2】有關特殊矩陣的運算19
7.方陣19
【基本題型3】有關方陣的性質19
【基本題型4】矩陣運算規律與數運算規律的區別19
8. 伴隨矩陣20
9. 逆矩陣20
【基本題型5】利用伴隨矩陣法求較低階矩陣的逆20
【基本題型6】判定或證明抽象矩陣可逆並求逆21
【基本題型7】求抽象矩陣的逆22
【基本題型8】有關伴隨矩陣的命題22
10.分塊矩陣24
【基本題型9】分塊矩陣的計算24
【基本題型10】分塊矩陣的運用26
11.初等變換27
12.初等矩陣28
13.初等矩陣的套用29
【基本題型11】將矩陣寫成初等矩陣乘積形式29
【基本題型12】利用初等變換法求矩陣的逆30
14. 矩陣的秩31
【基本題型13】按定義求矩陣的秩31
15.矩陣秩的基本結論31
【基本題型14】利用秩的基本結論解題31
16.用初等變化法求矩陣A的秩32
【基本題型15】用初等變換法求矩陣的秩32
第三章向量35
複習導學35
1. n維向量的概念35
2. n維向量的線性運算 35
3. 向量加法和數量乘積運算滿足以的運算性質35
4. 向量、向量組與矩陣35
【基本題型1】向量的線性運算36
5.一個向量與一個向量組之間的線性表示36
【基本題型2】利用構成矩陣的秩來判定一個向量能否由另一向量組線性表示37
6. 向量組的線性相關與線性無關38
【基本題型3】有關抽象向量組的線性相關性的證明38
【基本題型4】有關分量具體的向量組的線性相關性的判定38
7. 線性相關性的重要性質及定理39
【基本題型5】有關線性相關性的概念和重要定理的題目39
8.兩個向量組的線性表示及其等價42
9. 兩個向量組線性相關性的性質定理42
【基本題型6】有關兩個向量組之間的線性表示及其相關性的判定42
10. 向量組的極大無關組43
11. 向量組的秩44
12. 兩個向量組秩之間的關係44
13. 向量組的秩和矩陣的秩的關係44
14. 用初等變換法求向量組的秩和極大無關組44
【基本題型7】求一個向量組的極大無關組並表示其餘向量44
【基本題型8】有關等價的向量組的證明45
【基本題型9】求向量組的秩46
【基本題型10】有關抽象向量組或矩陣秩的不等式的證明46
【基本題型11】關於抽象向量組和矩陣秩的等式的證明47
15. 向量的內積、長度、夾角50
16.Schmidt正交化、單位化50
17.正交矩陣51
18. 向量空間的定義、基與維數51
【基本題型12】求解空間的一組標準正交基51
【基本題型13】有關向量空間的維數52
19. 向量在基下的坐標52
【基本題型14】求向量在基下的坐標52
20. 兩個向量組之間的過渡矩陣53
【基本題型15】求兩組基之間的過渡矩陣53
第四章線性方程組55
複習導學55
1. m個方程n個未知量的線性方程組的一般形式55
2. 齊次線性方程組的基礎解系55
【基本題型1】有關基礎解系的概念55
3. 線性方程組解的性質和結構56
【基本題型2】有關方程組解的性質和結構56
4. 線性方程組解的判定59
【基本題型3】有關解的判定定理59
5.線性方程組求解的初等變換法61
【基本題型4】求(非)齊次方程組的基礎解系和通解61
6.線性方程組求解的克萊姆法則62
【基本題型5】按照克萊姆法則求方程組的解63
7. 線性方程組的求解和討論65
【基本題型6】含參數方程組解的討論65
【基本題型7】求齊次線性方程組的基礎解系、通解67
【基本題型8】求非齊次方程組的通解68
【基本題型9】已知齊次方程組的解,反求係數矩陣69
第五章特徵值與相似對角化71
複習導學71
1?特徵值和特徵向量的定義71
【基本題型1】有關特徵值和特徵向量定義的題目71
2?特徵值和特徵向量的計算步驟71
【基本題型2】求具體矩陣的特徵值和特徵向量72
3?特徵值和特徵向量的性質72
【基本題型3】有關特徵值和特徵向量性質的題目73
【基本題型4】求抽象矩陣的特徵值和特徵向量74
4?相似矩陣的概念76
5?相似矩陣的性質76
【基本題型5】有關相似矩陣性質的題目76
6?矩陣可以對角化的條件77
【基本題型6】有關兩方陣相似的判定78
7?矩陣對角化的方法78
【基本題型7】有關矩陣可對角化的判定79
【基本題型8】已知矩陣的特徵值和特徵向量,反求矩陣81
8?n階實對稱矩陣A的主要結論82
【基本題型9】有關實對稱矩陣的性質82
【基本題型10】求正交矩陣Q,將實對稱矩陣化為對角陣84
【基本題型11】有關特徵值、特徵向量的性質及其套用86
第六章二次型89
複習導學89
1?二次型的概念89
【基本題型1】寫出二次型的矩陣89
【基本題型2】已知二次型的秩,反求其參數90
2?線性變換91
3?矩陣的契約91
【基本題型3】判斷兩個矩陣是否契約91
4?二次型的標準形92
【基本題型4】二次型的最大值問題92
5?進一步的結論93
【基本題型5】已知二次型線性變換前後的形式,反求其中的參數93
6?化二次型為標準形的配方法93
【基本題型6】用配方法化二次型化為標準形或規範形94
7?化二次型為標準形的正交變換法95
【基本題型7】求正交變換,將二次型化為標準形或規範形95
8?正定二次型和正定矩陣98
【基本題型8】判定二次型或矩陣的正定性98第七章行列式102
考點歸納102
考點解讀102
★ 命題趨勢102
★ 難點剖析102
1?n階行列式的計算102
2? 抽象型行列式的計算104
3? 證明行列式|A|=0的方法104
4? 分塊矩陣的行列式104
點擊考點+方法歸納104
有關行列式計算的題目104
【考點1】元素具體的含文字的低階行列式的計算104
【考點2】含在矩陣方程中的方陣的行列式的計算106
【考點3】抽象矩陣的行列式求值107
【考點4】高階行列式的計算111
有關行列式的證明題112
【考點5】抽象行列式等於零或不等於零的判定或證明112
【考點6】分塊矩陣的行列式114
第八 章矩陣116
考點歸納116
考點解讀116
★ 命題趨勢116
★ 難點剖析116
1? 兩個矩陣可乘的條件116
2? 矩陣乘法不滿足交換律和消去律116
3? 解矩陣方程116
4? 與初等變換有關的命題117
5? 與伴隨矩陣有關的命題117
6? 矩陣秩的計算與證明117
7?分塊矩陣的運算118
點擊考點+方法歸納119
有關逆矩陣的題目119
【考點1】隱含矩陣可逆,求逆矩陣119
【考點2】判定或證明矩陣可逆120
有關矩陣的乘法運算122
【考點3】可交換矩陣的運算122
【考點4】求方陣的冪An122
【考點5】解矩陣方程125
有關矩陣的初等變換和初等矩陣的命題129
【考點6】求初等變換中的變換矩陣129
【考點7】求由初等變換得到的矩陣的有關性質130
與伴隨矩陣、轉置矩陣等有關的命題131
【考點8】利用伴隨矩陣萬能公式求其逆、行列式等131
有關矩陣的秩135
【考點9】求元素具體但含參數的矩陣的秩或其反問題135
【考點10】求抽象矩陣的秩136
【考點11】矩陣秩的證明138
【考點12】有關秩為1的矩陣140
第九章向量142
考點歸納142
考點解讀142
★命題趨勢142
★難點剖析142
1? 關於向量組的線性相關有如下等價命題142
2? 關於向量組的線性無關有如下等價命題142
3? 與向量組個數和維數有關的線性相關性結論143
4? 關於線性表示的有關結論143
5? 關於向量組的秩的有關結論143
6? 關於向量組的基或其他143
點擊考點+方法歸納144
有關向量組的計算題型144
【考點1】 已知向量組間的線性表示關係,確定其中的參數144
【考點2】已知向量組的線性相關性,確定其中的參數,並求一個極大無關組149
【考點3】求向量在基下的坐標151
【考點4】求兩組基之間的過渡矩陣151
【考點5】求解空間的一組標準正交基152
有關向量組的證明題型153
【考點6】判定或證明抽象向量組的線性表示153
【考點7】抽象的向量組的線性相關性的證明154
【考點8】抽象的向量組的秩的證明156
有關向量的客觀題型156
【考點9】有關向量組的線性相關性的判定156
【考點10】與矩陣有關的向量組的相關性的判定159
【考點11】與線性表示有關的線性相關性的判定161
【考點12】已知數字向量組線性相關,確定其中的參數163
第十章線性方程組165
考點歸納165
考點解讀165
★命題趨勢165
★難點剖析165
1? n元線性方程組的三種等價的表達形式165
2? 線性方程組解的性質166
3? m個方程n個未知量的齊線性方程組解的判定166
4? m個方程n個未知量的非齊線性方程組解的判定166
5? 對含參數的線性方程組,一般有以下兩種題型166
6? 對抽象方程組的求解166
7? 尋找或證明向量組是某方程組的基礎解系的3個關鍵點167
8? 兩個線性方程組解(都是齊次方程組或都是非齊次方程組)之間的關係167
9? 求方程組(Ⅰ)Am×tX=α和方程組(Ⅱ)Bt×nX=β的公共解的一般方法167
點擊考點+方法歸納167
有關抽象方程組的求解167
【考點1】抽象方程組的求解167
有關含參數的方程組的討論或求解172
【考點2】討論齊次方程組中的參數,使得方程組只有零解或非零解,並在有非零解時求其通解.172
【考點3】討論非齊次方程組中的參數,使得方程組無解或有解,並在有解時求其通解178
【考點4】已知方程組的解的情況,反求其中的參數並求解181
有關兩個方程組解之間的關係184
【考點5】有關兩方程組 (Ⅰ)Am×tX=α和 (Ⅱ)Bt×nX=β的公共解問題184
【考點6】已知兩方程組同解,反求其中的參數186
【考點7】判斷兩個抽象的矩陣方程解之間的關係188
有關基礎解系的命題189
【考點8】已知一組向量已是基礎解系,證明或判斷其線性組合構成的另一組向量也是基礎解系189
【考點9】已知非齊次方程組解的情況,尋求對應齊次方程組的基礎解系191
有關AB=0的命題192
【考點10】已知AB=0,確定A或B中的參數192
【考點11】已知AB=0,確定矩陣A或B的秩193
【考點12】已知AB=0,確定A或B的行列式值是否為零194
【考點13】已知AB=0,確定A或B的行向量組或列向量組的相關性195
第十一章特徵值與矩陣的相似對角化197
考點歸納197
考點解讀197
★命題趨勢197
★難點剖析197
1?求矩陣A的特徵值和特徵向量的一般方法197
2?有關的重要結論197
3?求與A相關矩陣的特徵值和特徵向量198
4?兩矩陣相似的必要條件198
5?證明或判斷矩陣相似及其逆問題198
6?可對角化的判定及其逆問題198
7?實對稱矩陣的主要性質199
點擊考點+方法歸納199
有關特徵值和特徵向量的計算199
【考點1】求具體矩陣的特徵值和特徵向量199
【考點2】求抽象矩陣的特徵值203
【考點3】求抽象矩陣的特徵向量204
與特徵值、特徵向量有關的逆的問題204
【考點4】已知矩陣的特徵值、特徵向量,反求其中的參數204
【考點5】已知矩陣的特徵值、特徵向量,反求矩陣206
有關兩矩陣的相似問題207
【考點6】兩具體的矩陣相似,確定其中的參數207
【考點7】已知抽象矩陣和一個向量組之間的關係,求其相似對角矩陣等208
有關矩陣的對角化的題目211
【考點8】確定參數的值,使得有關矩陣可對角化,並求相應的可逆矩陣和對角矩陣211
【考點9】確定參數的值後,討論矩陣是否可對角化213
有關實對稱矩陣的題目215
【考點10】已知實對稱矩陣的全部特徵值和部分特徵向量,反求矩陣A215
【考點11】求正交矩陣,化實對稱矩陣A為對角矩陣217
【考點12】特徵值、特徵向量的性質及其套用223
【考點13】有關兩矩陣相似的必要條件225
有關特徵值、特徵向量和相似矩陣的證明226
【考點14】兩相關矩陣的特徵值與特徵向量間的關係226
【考點15】兩相關矩陣的特徵值與特徵向量間的關係226
第十二章二次型228
考點歸納228
考點解讀228
★命題趨勢228
★難點剖析228
1?化二次型為標準形的定理228
2?求二次型的標準形的方法228
3. 關於二次型的唯一性228
4?關於二次型的慣性指數和秩229
5?二次型的規範形229
6?契約變換與契約矩陣229
7?契約矩陣與相似矩陣229
8?正定二次型及其對應矩陣的正定性229
點擊考點+方法歸納230
有關二次型的標準化問題230
【考點1】先確定二次型中的參數,再求正交變換或正交變換矩陣,最後將含參數的二次型化為標準形230
【考點2】求正交變換矩陣233
有關二次型對應矩陣的命題237
【考點3】求含參數的二次型所對應矩陣的特徵值237
【考點4】求抽象的二次型所對應的矩陣239
有關二次型或矩陣的正定241
【考點5】判別或證明二次型的正定241
【考點6】證明矩陣的正定242
【考點7】有關正定的綜合題244
契約變換與契約矩陣245
【考點8】契約變換與契約矩陣245
第十三章線性代數與幾何的關係247
考點歸納247
考點解讀247
★命題趨勢247
★難點剖析247
1?線、面間的位置關係和方程組的轉化247
2?常見的二次曲面的標準方程及其圖形248
3?常見的二次曲面的秩248
點擊考點+方法歸納248
【考點1】直線或平面間的位置關係與向量組的相關性或矩陣的秩的相互轉化248
【考點2】二次型的標準形表示何種曲面253
【考點3】利用二次曲面的圖形確定二次型的秩、正負特徵值個數或正負慣性指數255
線性代數複習點睛257
2011年研究生入學考試真題258
三套自我檢查題及答案258
參考文獻266

相關詞條

熱門詞條

聯絡我們