Web數據挖掘:將客戶數據轉化為客戶價值

Web數據挖掘:將客戶數據轉化為客戶價值

《Web數據挖掘將客戶數據轉化為客戶價值》是2004年電子工業出版社出版的圖書,作者是GordonS.linoff,Michaelj.a.berry。

基本介紹

  • 作者:Gordon S.linoff                       /            Michael j.a.berry
  • ISBN:9787505394728
  • 頁數:336
  • 定價:45.00
  • 出版社:電子工業出版社
  • 出版時間:2004-3-1
  • 裝幀:平裝(無盤)
內容介紹,作者介紹,作品目錄,

內容介紹

Web正在改變著整個業務領域!業務領域的不斷改變影響著數據挖掘技術,數據挖掘也在不斷地改變著整個業務領域。本書全面地展示了Web對於數據挖掘在業務方面的影響,列舉了大量Web數據挖掘的實例,並將數據挖掘置於一個學習環境中,描述了一些對於任何關注客戶的企業都非常重要的概念,以及面向Web的與業務相關的分析類型。
本書適合於Web數據挖掘、Web分析及其他相關領域的技術專業人員、經營管理人員閱讀,也可以作為大專院校相關課程的重要輔導教材。

作者介紹

Gordon S.Linoff和Michael J.A.Berry是Data Miners公司的創始人,這是一家致力於數據挖掘諮詢的公司。他們為線上和離線的以客戶為中心的公司提供客戶關係管理(CRM)諮詢。他們也是“Data Mining Techniques”和Mastering Data Mining這兩本書(都由Wiley出版)的作者。

作品目錄

第1章 太陽底下沒有新事物了嗎1
1.1 “新經濟”有何新奇之處2
1.1.1 電子商務3
1.1.2 電子媒體4
1.1.3 電子市場5
1.2 關注客戶是奢侈的6
1.2.1 客戶的重要性7
1.3 數據挖掘的角色8
1.3.1 將它們合在一起9
1.4 市場的角色9
1.4.1 品牌10
1.4.2 品牌和廣告11
1.4.3 廣告正在改變12
1.4.4 目標市場12
1.5 超越目標市場13
1.5.1 定義客戶價值14
1.5.2 實時考慮14
1.5.3 理解客戶和業務流程15
1.5.4 市場策略的試驗性設計16
小結16
第2章 Web數據挖掘的方法18
2.1 從數據挖掘的角度看網路19
2.2 結構挖掘21
2.2.1 總體結構21
2.2.2 局部結構28
2.3 挖掘客戶使用模式30
2.3.1 點擊流分析31
2.3.2 網路日誌32
2.3.3 套用日誌37
2.3.4 套用挖掘提高網站可用性38
2.4 內容挖掘39
2.4.1 信息檢索39
2.4.2 基於內容的分類40
2.4.3 從純文本中提取信息48
小結49
第3章 線上銷售:銷售用卡車交付的商品50
3.1 零售51
3.1.1 媒介存在的原因52
3.1.2 管理供應鏈和存貨56
3.2 目錄業和網站58
3.2.1 目錄業歷史58
3.2.2 現狀59
3.2.3 為什麼產品目錄與電子商務有關59
3.2.4 目錄與Web站點的相似點61
3.2.5 目錄與Web站點的不同點61
3.3 Web的零售客戶64
3.3.1 從參觀者到客戶65
3.3.2 剖析購買行為66
3.3.3 購買行為67
3.3.4 瀏覽行為69
3.3.5 做推薦70
3.4 支持Web數據挖掘的基本結構74
3.4.1 實現不同任務的不同模組75
3.4.2 電子商務IT體系結構的一個實例77
小結80
第4章 數字銷售:銷售用乙太網分發的商品81
4.1 什麼可以用比特流傳輸81
4.2 分發音樂83
4.2.1 Web作為無線電廣播84
4.2.2 Web作為自動唱片點唱機86
4.2.3 Web作為音樂商店87
4.2.4 Web作為舊貨交易場所91
4.2.5 Web作為Open Mike Night95
4.3 分發錄像95
4.4 分發信息96
4.4.1 基於信息恢復的商業96
4.5 做推薦99
4.5.1 合作過濾99
4.6 分發互動娛樂102
小結102
第5章 吸引廣告客戶的目光104
5.1 廣告業務模型104
5.1.1 廣告商105
5.1.2 廣告客戶106
5.1.3 廣告經紀人108
5.1.4 廣告創意人110
5.2 線上廣告的技術110
5.2.1 幀和視窗111
5.2.2 Cookies112
5.3 線上廣告基礎119
5.3.1 廣告商和廣告客戶之間的匹配120
5.3.2 什麼是點擊價值124
5.3.3 微轉換率124
5.4 發現合適的客戶126
5.4.1 你的讀者適合嗎126
5.4.2 提供廣告空間的業務127
5.4.3 衡量一個讀者的適宜度128
5.4.4 計算讀者群的適宜度129
5.5 跟蹤客戶行為132
5.5.1 隱形跟蹤設備133
5.5.2 跟蹤電子郵件閱讀器134
5.6 吸引眼球135
5.6.1 電子媒體136
5.6.2 門戶138
5.6.3 目錄和服務139
小結139
第6章 市場:連線著銷售者和客戶141
6.1 自由市場的歷史142
6.1.1 自由市場及其單一化假設142
6.2 商品交易143
6.2.1 明尼阿波利斯穀物交易所144
6.2.2 數據挖掘機會:價格預測148
6.2.3 其他相關的歷史性模型152
6.3 電子化市場153
6.3.1 多對多,跨行業公眾交易155
6.3.2 多對多交易的數據挖掘機會159
6.3.3 多對多,單一產業公眾交易163
6.3.4 多對少的公眾交易166
6.3.5 私有市場168
小結170
第7章 客戶價值172
7.1 計算客戶價值的基礎173
7.2 使用客戶價值的事例173
7.2.1 事例1:客戶價值幫助我們定位最好的客戶173
7.2.2 事例2:客戶價值等於總體贏利175
7.2.3 事例3:客戶價值決定在客戶關係上的投資175
7.2.4 事例4:客戶價值標識了我們應該擺脫的不良客戶176
7.3 老客戶的價值177
7.4 客戶價值計算中的幾個元素179
7.4.1 客戶的定義179
7.4.2 度量單位179
7.4.3 客戶價值的時間框架182
7.4.4 客戶價值組成183
7.4.5 下鑽和聚集184
7.4.6 從驅動到組成185
7.5 收入185
7.5.1 一個簡單案例185
7.5.2 間接收入186
7.5.3 其他價值源189
7.6 成本190
7.6.1 固定成本和可變成本190
7.6.2 客戶價值中的成本191
7.6.3 市場成本計算191
7.6.4 獲取客戶192
7.7 預期價值的轉移195
小結195
第8章 知道何時開始擔憂:市場行銷中的風險函式和倖存分析法197
8.1客戶保持力198
8.1.1 存在曲線告訴我們什麼198
8.1.2 把保持力看做衰變203
8.2 風險函式206
8.2.1 基本思想207
8.2.2 套用風險函式209
8.2.3 審查的重要性210
8.3 風險函式的例子213
8.3.1 固定風險213
8.3.2 浴缸型風險213
8.3.3 來自真實世界的一個例子214
8.4 從風險到倖存率215
8.4.1 保持力215
8.4.2 倖存率216
8.5 均衡風險218
8.5.1 均衡風險的一些例子219
8.5.2 時間依賴因素220
8.6 實際中的風險函式221
8.6.1 自發和非自發的損耗221
8.6.2 客戶什麼時候會回來222
8.6.3 保持力之外的套用223
小結224
第9章 群組分析:使用群組跟蹤客戶225
9.1 一個簡單的例子226
9.1.1 背景226
9.1.2 解決問題的途徑227
9.1.3 結果227
9.1.4 方法概述228
9.2 基於存儲的推理229
9.2.1 多近才算近呢230
9.2.2 聯合函式232
9.2.3 根據距離選擇欄位233
9.3 單元和群組235
9.3.1 客戶初始行為236
9.3.2 客戶的幾個重要屬性237
9.3.3 把他們放在一起242
9.4 使用群組來評估和計畫市場活動242
9.4.1 定義群組243
9.4.2 使用群組來理解保持力245
9.4.3 量化保持力的好處250
9.4.4 合併客戶的價值251
小結252
第10章 用行銷學分析來理解客戶253
10.1 行銷學254
10.1.1 行銷科學254
10.1.2 行銷學和科學方法256
10.2 多大才算足夠大258
10.2.1 一個行銷學例子258
10.2.2 什麼是我們真正,真正需要的259
10.2.3 可信的回應率259
10.2.4 樣本該多大261
10.2.5 最終結果263
10.3 什麼時候起的變化264
10.3.1 消費者分類264
10.3.2 使用群體的例子265
10.3.3 關於比較很多不同群體的警告266
10.4 設計市場調查時需考慮的因素267
10.4.1 目前的情況267
10.4.2 計畫測試269
10.4.3 高級測試270
10.4.4 分析結果273
10.4.5 設計一次比較測試的指導274
10.5 哪一個因素重要?測試結果的比較274
10.5.1 如果它沒有用該怎么辦274
10.5.2 建立市場調節275
10.5.3 獲得渠道是重要的因素嗎276
10.5.4 承兌的優先權是重要因素嗎278
10.5.5 套用結果280
10.5.6 使用Chi-平方的說明280
小結281
第11章 生活(測試)和學習282
11.1 數據挖掘如何對學習做貢獻283
11.1.1 建立數據挖掘小組283
11.1.2 潛在的易得的果實283
11.1.3 解決問題285
11.1.4 用數據挖掘來救援286
11.2 樂意去學習287
11.3 市場分割288
11.3.1 市場研究方法289
11.3.2 在資料庫中尋找分類295
11.3.3 可操作分類的好處296
11.3.4 尋找可操作分類的方法296
11.4 學習計畫301
11.4.1 學習是正在進行的過程302
11.4.2 作為正在進行的過程客戶303
11.4.3 計畫高級分析304
11.5 學習和記憶305
11.5.1 要求1:創建客戶簽名306
11.5.2 要求2:創建過去的簽名306
11.5.3 要求3:深入細節307
11.5.4 要求4:長期跟蹤客戶308
11.5.5 要求5:長期跟蹤活動308
小結309

相關詞條

熱門詞條

聯絡我們