《Theory and Calculation of Heat Transfer in F》是2017年清華大學出版社出版的圖書,作者張衍國、李清海、周會。
基本介紹
- 中文名:Theory and Calculation of Heat Transfer in F
- 作者:張衍國、李清海、周會
- 出版時間:2017年
- 出版社:清華大學出版社
- ISBN:9780128009666
內容簡介,作者簡介,圖書目錄,
內容簡介
本書簡明而系統地闡述了爐內傳熱的基本原理、計算方法。全書共分七章,包括輻射換熱的基本理論與計算,層燃爐、室燃爐和循環床鍋爐的爐膛傳熱計算方法,鍋爐熱力計算方法以及積灰、結渣對爐膛傳熱的影響等內容。本書作為銜接基礎課傳熱學和鍋爐課程設計之間的教材,對從基礎理論到工程實際的處理方法給予了充分的重視。結合實際的工程案例,提供了完整的爐膛傳熱和熱力計算的實例,並結合最新的研究進展系統介紹了氣固兩相流的傳熱和循環流化床鍋爐的傳熱計算。本書可作為高等學校熱能工程類專業的高年級本科生教材或教學參考書,也可供相關專業工程技術人員參考。
作者簡介
張衍國,教授、博導,《工業加熱》編委,全國第四屆“發明獎”榮獲者。長期致力於劣質燃料的燃燒、餘熱利用、固體燃料的熱轉化等技術的開發和套用及節能改造等技術服務,並及時跟蹤前沿課題,開發高爐渣乾法粒化技術、可燃固體廢棄物超臨界熱處理、生物質碳化、固體燃料微型熱發電等技術。
圖書目錄
Contents
ForewordvPrefaceviiSymbolsix
1. TheoreticalFoundationandBasicPropertiesofThermalRadiation
1.1. ThermalRadiationTheory—Planck’sLaw3
1.2. EmissivePowerandRadiationCharacteristics6
1.2.1. DescriptionofRadiantEnergy6
1.2.2. PhysicalRadiationCharacteristics9
1.2.3. MonochromaticandDirectionalRadiation11
1.3. BasicLawsofThermalRadiation12
1.3.1. Planck’sLawandCorollaries12
1.3.2. Lambert’sLaw15
1.3.3. Kirchhoff’sLaw16
1.4.RadiativityofSolidSurfaces 17
1.4.1. DifferenceBetweenRealSurfacesandBlackbodySurfaces17
1.4.2. Graybody19
1.4.3. DiffuseSurfaces19
1.5.ThermalRadiationEnergy 21
1.5.1. ThermalRadiationForms21
1.5.2. Radiosity22
1.6.RadiativeGeometricCon.gurationFactors 24
1.6.1. De.nitionoftheCon.gurationFactor24
1.6.2. Con.gurationFactorProperties27
1.6.3. Con.gurationFactorCalculation29
1.7. Simpli.edTreatmentofRadiativeHeatExchangeinEngineeringCalculations
41
1.7.1. Simpli.cationTreatmentofRadiationHeatTransferinCommonEngineeringCalculations41
1.7.2. DiscussiononSimpli.edConditions41
2. EmissionandAbsorptionofThermalRadiation
2.1.EmissionandAbsorptionMechanisms 46
2.1.1. MolecularSpectrumCharacteristics46
2.1.2. AbsorptionandRadiationofMedia47
2.2. RadiativityofAbsorbingandScatteringMedia49
2.2.1. AbsorbingandScatteringCharacteristicsofMedia49
2.3. Scattering50
2.4. AbsorptionandScatteringofFlueGas50
2.4.1. RadiationIntensityCharacteristics50
2.4.2. ExchangeandConservationofRadiantEnergy54
2.4.3. MeanBeamLength,Absorptivity,andEmissivityofMedia59
2.4.4. GasAbsorptivityandEmissivity65
2.4.5. FlueGasandFlameEmissivity71
3. RadiationHeatExchangeBetweenIsothermalSurfaces
3.1. RadiativeHeatExchangeBetweenSurfacesinTransparentMedia76
3.1.1. RadiativeHeatTransferofaClosedSystemComposedofTwoSurfaces76
3.1.2. RadiationTransferofaClosedSystemComposedofMultipleSurfaces80
3.1.3. HoleRadiativeHeatTransfer82
3.1.4. RadiativeHeatTransferofHotSurface,WaterWall,andFurnaceWall86
3.2. RadiativeHeatExchangeBetweenanIsothermalMediumandaSurface88
3.2.1. HeatTransferBetweenaMediumandaHeatingSurface89
3.2.2. HeatTransferBetweenaMediumandaFurnace90
3.2.3. CalculatingRadiativeHeatTransferAccordingtoProjectedHeat93
3.3. RadiativeHeatExchangeBetweenaFlueGasandaHeatingSurfacewithConvection95
4. HeatTransferinFluidizedBeds
4.1. FundamentalConceptsofFluidizedBeds101
4.1.1. De.nitionandCharacteristicsofFluidizedBeds101
4.1.2. BasicCFBBoilerStructure103
4.1.3. DifferentTypesofCFBBoilers105
4.1.4. CFBBoilerCharacteristics107
4.2. ConvectiveHeatTransferinGas–SolidFlow112
4.2.1. Two-PhaseFlowHeatTransferMechanism114
4.2.2. FactorsImpactingTwo-PhaseHeatTransfer114
4.2.3. Two-PhaseFlowConvectiveHeatTransfer118
4.3. RadiativeHeatTransferinGas–SolidFlow122
4.4. HeatTransferCalculationinaCirculatingFluidizedBed124
4.4.1. In.uenceofHeatingSurfaceSizeonHeatTransfer125
4.4.2. CFBBoilerGasSideHeatTransferCoef.cient127
Contentsiii
5. HeatTransferCalculationinFurnaces
5.1. HeatTransferinFurnaces132
5.1.1. ProcessesintheFurnace132
5.1.2. Classi.cationofHeatTransferCalculationMethods133
5.1.3. FurnaceHeatTransferCalculationEquation134
5.1.4. FlameTemperature135
5.2. HeatTransferCalculationinSuspension-FiringFurnaces139
5.2.1. GurvichMethod139
5.2.2. CalculationMethodInstructions140
5.2.3. FurnaceHeatTransferCalculationExamples143
5.3. HeatTransferCalculationinGrateFurnaces143
5.3.1. HeatTransferCalculationinGrateFurnacesinChina143
5.3.2. HeatTransferCalculationinGrate-FiringFurnaces149
5.4. HeatTransferCalculationinFluidizedBedFurnaces152
5.4.1. HeatTransferCalculationinBubblingFluidizedBed(BFB)Furnaces152
5.4.2. CFBFurnaceStructureandCharacteristics153
5.4.3. HeatTransferCalculationinCFBFurnaces157
5.5. HeatTransferCalculationinBack-EndHeatingSurfaces160
5.5.1. BasicHeatTransferEquations161
5.5.2. HeatTransferCoef.cient162
5.6. ThermalCalculationoftheBoiler165
5.6.1. BasicDe.nitionsofBoilerHeatingSurfaces165
5.6.2. ThermalCalculationMethodsforBoilers169
5.6.3. ThermalCalculationAccordingtoDifferentFurnaceTypes170
6. EffectsofAshDepositionandSlaggingonHeatTransfer
6.1. AshDepositionandSlaggingProcessesandCharacteristics173
6.1.1. DepositionandSlagging173
6.1.2. FormationandCharacteristicsofDepositionandSlagging175
6.1.3. DamageofDepositionandSlagging178
6.1.4. AshComposition179
6.2. EffectsofAshDepositionandSlaggingonHeatTransferinFurnaces179
6.2.1. HeatTransferCharacteristicsandAshLayerCalculationwithSlagging182
6.2.2. HeatTransferCalculationwithDepositionandSlagging184
6.3. EffectsofAshDepositionandSlaggingonHeatTransferinConvectiveHeatingSurfaces185
6.3.1. EffectsofSevereAshDepositionandSlagging185
6.3.2. BasicHeatTransferEquationforConvectiveHeatingSurfaces185
6.3.3. Coef.cientsEvaluatingtheAshDepositionEffect188
7.MeasuringHeatTransferintheFurnace
7.1.FlameEmissivityMeasurement 194
7.1.1. BichromaticOpticalPyrometer194
7.1.2. AuxiliaryRadiativeResources196
7.2.RadiativeFluxMeasurement 197
7.2.1. ConductiveRadiationHeatFluxMeter198
7.2.2. CapacitiveRadiationHeatFluxMeter199
7.2.3. CalorimetricRadiationHeatFluxMeter200
7.3.TwoOtherTypesofHeatFluxMeter 200
7.3.1. HeatPipeHeatFluxMeter201
7.3.2. MeasuringLocalHeatTransferCoef.cientinCFBFurnaces202
AppendixA.CommonPhysicalConstantsofHeatRadiation205AppendixB.CommonCon.gurationFactorCalculationFormulas207AppendixC.ExampleofThermalCalculationof113.89kg/s(410t/h)
Ultra-High-Pressure,Coal-FiredBoiler219AppendixD.SupplementaryMaterials293
References323SubjectIndex325