周會(清華大學特別研究員)

周會(清華大學特別研究員)

本詞條是多義詞,共4個義項
更多義項 ▼ 收起列表 ▲

周會,男,博士,清華大學能源與動力工程系特別研究員、博士生導師。

基本介紹

  • 中文名:周會
  • 畢業院校清華大學
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:能源與動力工程
教育背景,工作履歷,研究領域,學術兼職,榮譽獎勵,學術成果,

教育背景

  • 2010/09-2015/07, 清華大學,熱能工程系,博士
  • 2013/11-2014/04, 英國利茲大學,訪問學生
  • 2006/08-2010/07, 清華大學,熱能工程系,學士

工作履歷

  • 2021/07至今, 清華大學,能動系,助理教授
  • 2018/10-2021/05, 蘇黎世聯邦理工學院,機械與過程工程系,瑪麗居里學者
  • 2017/07-2018/09, 美國能源部艾姆斯國家實驗室,博士後
  • 2015/09-2017/07, 美國哥倫比亞大學,地球與環境工程系,博士後

研究領域

主要研究領域為碳中和技術與可再生能源利用技術,具體包括
  • 生物質/廢棄物資源化:生物質/廢棄物的水熱/熱解/氣化、木質素化學
  • 二氧化碳捕集與轉化:原位二氧化碳吸收強化制氫、催化-吸收雙功能材料、二氧化碳加氫、乾重整
  • 可再生氫能的生產與存儲:碳氫化合物重整制氫、甲醇儲氫
  • 能源領域的多相催化:二維材料在催化中的套用、原位表征技術

學術兼職

Carbon Capture Science & Technology,創刊副主編
Frontiers in Energy Research,副主編
Green Energy & Environment,青年編委
Material Today Sustainability,青年編委
美國化學會,會員英國皇家化學會,副會員
北京能源與環境學會京津冀專家委員會委員
European Commission Research Executive Agency,基金評審專家
美國化學會第256屆年會生物質分論壇,主席

榮譽獎勵

2021 中國十大新銳科技人物
2020 MCCA最佳創新者獎(每年僅1人)
2019 國際空氣與廢物協會Arthur C. Stern 傑出論文獎
2018 歐盟瑪里居里學者項目
2015 Springer Nature Outstanding Thesis Award
2015 清華大學優秀博士畢業生
2015 清華大學優秀博士論文一等獎
2015 清華大學學術新秀提名獎
2015 清華大學熱能系學術新秀
2015 清華大學優秀共產黨員
2015 清華大學優秀研究生黨員標兵
2014 清華大學“一二・九”獎學金
2014 清華大學林楓輔導員獎
2014 國家獎學金
2013 清華大學“一二・九”輔導員獎
2013 清華大學綜合一等獎學金
2023 入選2023“強國青年科學家”名單。

學術成果

學術專著
Zhou H. Combustible Solid Waste Thermochemical Conversion. Springer-Nature; 2017. (ISBN 978-981-10-3826-6, 172 pages)
Zhang Y, Li Q, Zhou H. Theory and Calculation of Heat Transfer in Furnaces. Elsevier; 2016. (ISBN 978-0-12-800966-6, 350 pages)
代表性期刊論文
[1] Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis 2021;4:860–71. (封面文章)
[2] Zhou H, Chen Z, Kountoupi E, Tsoukalou A, Abdala PM, Florian P, et al. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications 2021;12:5510.
[3] Zhou H, Wang H, Sadow A, Slowing I. Toward Hydrogen Economy: Selective Guaiacol Hydrogenolysis under Ambient Hydrogen Pressure. Applied Catalysis B: Environmental 2020:118890.
[4] Zhou H, Wang H, Perras FA, Naik P, Pruski M, Sadow AD, et al. Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry 2020;22:4676–82.
[5] Zhou H*, Park AHA. Bio-Energy with Carbon Capture and Storage (BECCS) via Alkaline Thermal Treatment: Production of High Purity H2 from Wet Wheat Straw Grass with CO2 Capture. Applied Energy. 2020;264.
[6] Zhao X (1), Zhou H (1), Sikarwar V, Zhao M, Park A, Fennell P, Shen L, Fan L. Biomass-based Chemical Looping Technologies: the Good, the Bad and the Future. Energy & Environmental Science 2017:10:1885-1910. (封面文章,ESI高被引論文)
[7] Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable & Sustainable Energy Reviews 2014;36:107-22. (ESI高被引論文)
其他論文
2021
[8] Yu S, Yang X, Xiang J, Li Q, Zhou H*, Zhang Y*. Statistical study of the distribution of voidage in a bubbling fluidized bed with a constant section. Chemical Engineering Research and Design 2021;171:305–16.
[9] Yu S, Yang X, Zhou H, Tan Z, Cong K, Zhang Y, et al. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021;9:1335.
[10] Chen R, Zhang S, Yang X, Li G, Zhou H, Li Q, et al. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Waste Management 2021;126:331–9.
[11] Saad JMd, Williams PT, Zhang YS, Yao D, Yang H, Zhou H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis 2021;156:105135.
[12] Mohamed BA, Bi X, Li LY, Leng L, Salama E-S, Zhou H. Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal 2021;426:131294.
[13] Yu S, Yang X, Xiang J, Zhou H, Li Q, Zhang Y. Effects of bed size on the voidage in gas-solid bubbling fluidized beds. Powder Technology 2021;387:197–204.
2020
[14] Zhou H*, Saad J, Li Q, Xu Y. Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. Waste Management 2020;104:42–50.
[15] Zhao M, Memon MZ, Ji G, Yang X, Vuppaladadiyam AK, Song Y, Raheem A, Li J, Wang W, Zhou H*. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy 2020;148:168–75.
[16] Wang F, Cheng B, Ting ZJ, Dong W, Zhou H, Anthony E, et al. Two-Stage Gasification of Sewage Sludge for Enhanced Hydrogen Production: Alkaline Pyrolysis Coupled with Catalytic Reforming Using Waste-Supported Ni Catalysts. ACS Sustainable Chem Eng 2020;8:13377–86.
2019
[17] Zhao M, Wang F, Fan Y, Raheern A, Zhou H*. Low-temperature alkaline pyrolysis of sewage sludge for enhanced H-2 production with in-situ carbon capture. Int J Hydrogen Energ. 2019:44, 8020–8027.
[18] Zhao M, Cui X, Ji G, Zhou H, Vuppaladadiyam AK, Zhao X. Alkaline Thermal Treatment of Cellulosic Biomass for H 2 Production Using Ca-Based Bifunctional Materials. ACS Sustainable Chem Eng 2019;7:1202–9.
2018
[19] Surenderan L, Saad JM, Zhou H, Neshaeimoghaddam H, Abdul Rahman A. Characterization Studies on Waste Plastics as a Feedstock for Energy Recovery in Malaysia. IJET 2018;7:534.
[20] Zhou H, Naik P, Slowing I, Sadow A. Mechanism study of production of cyclohexanol/cyclohexanone from lignin-derived guaiacol catalyzed by palladium on high-surface-area ceria at mild conditions. Abstracts of Papers of the American Chemical Society 2018;256.
[21] Long Y, Li Q, Zhou H, Meng A, Zhang Y. A grey-relation-based method (GRM) for thermogravimetric (TG) data analysis. J Mater Cycles Waste Manag 2018;20:1026–35.
2017
[22] Chen X, Jiang J, Yan F, Li K, Tian S, Gao Y, et al. Dry Reforming of Model Biogas on a Ni/SiO 2 Catalyst: Overall Performance and Mechanisms of Sulfur Poisoning and Regeneration. ACS Sustainable Chemistry & Engineering 2017;5:10248–57.
[23] Hou C, Wu Y, Jiao Y, Huang J, Wang T, Fang M, et al. Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption. Journal of Zhejiang University-SCIENCE A 2017;18:819–30.
[24] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta 2017.
[25] Long Y, Li Q, Zhou H, Meng A, Zhang Y. Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste, Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste. Journal of Tsinghua University(Science and Technology) 2017;57:1324–30.
[26] Long Y, Meng A, Chen S, Zhou H, Zhang Y, Li Q. Pyrolysis and Combustion of Typical Wastes in a Newly Designed Macro Thermogravimetric Analyzer: Characteristics and Simulation by Model Components. Energy Fuels 2017;31:7582–90.
2016
[27] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology 2016;144:299-304.
[28] Long Y, Zhou H*, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean Journal of Chemical Engineering 2016;33:2638-43.
[29] Long Y, Zhou H, Meng A, Li Q, Zhang Y. Pseudo-component method to predict interaction features of biowaste and plastics. Abstracts of Papers of the American Chemical Society 2016;252.
[30] Long Y, Meng A, Zhou H, Qin L, Zhang Y, Li Q. Pyrolysis characteristics of 18 kinds of biomass waste. Abstracts of Papers of the American Chemical Society 2016;252.
[31] 張衍國, 蒙愛紅, 周會, 龍艷秋, 武景麗. 以低二惡英排放為目標的氧化/還原氣氛下可燃固體廢棄物熱化學轉化機理. 科技創新導報 2016:162–3.
2015
[32] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances 2015;5:11371-7.
[33] Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances 2015;5:26509-16.
[34] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management 2015;36:136-46.
[35] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 2015;145:151-7.
[36] Zhou H, Meng A, Long Y, Li Q, Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 2015;36:106-18.
[37] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management 2015;38:194-200.
[38] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis 2015;111:265-71.
[39] Xiong S, Zhuo J, Zhou H, Pang R, Yao Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. Journal of Analytical and Applied Pyrolysis 2015;112:66–73.
[40] Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management 2015;46:247–56.
[41] Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel 2015;157:1–8.
[42] Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y. TGA pyrolysis and gasification of combustible municipal solid waste. Journal of the Energy Institute 2015;88:332–43.
2014
[43] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels 2014;28:6371-9.
[44] Zhou H, Wu C, Meng A, Zhang Y, Williams PT. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis 2014;110:264-9.
[45] Zhou H, Sun J, Meng A, Li Q, Zhang Y. Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration. Chinese Journal of Chemical Engineering 2014;22:1347-51.
[46] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Waste Management Association 2014;64:597-616.
[47] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis 2014;108:19-25.
[48] Li Q, Meng A, Li L, Zhou H, Zhang Y. Investigation of biomass ash thermal decomposition by thermogravimetry using raw and artificial ashes. Asia-Pacific Journal of Chemical Engineering 2014;9:726–36.
[49] 蒙愛紅, 龍艷秋, 周會, 張衍國, 李清海. 可燃固體廢棄物熱化學反應表征探索. 清華大學學報(自然科學版) 2014;54:235–9.
[50] 孫進, 李清海, 李國岫, 周會, 秦嶺, 張衍國. 城市生活垃圾焚燒中氯化物對銅遷移轉化特性的影響. 中國電機工程學報 2014:1245–52.
2013
[51] Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta 2013;566:36-43.
[52] Meng A, Zhou H, Qin L, Zhang Y, Li Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 2013;104:28–37.

相關詞條

熱門詞條

聯絡我們