《Side Reactions in Peptide Synthesis 多肽合成副反應》是2015年清華大學出版社出版的圖書,作者是[中]Yi YANG。
基本介紹
- 中文名:Side Reactions in Peptide Synthesis 多肽合成副反應
- 作者:[中]Yi YANG
- 出版時間:2015年12月01日
- 出版社:清華大學出版社
- ISBN:9787302423157
- 定價:198 元
圖書簡介,前言,目錄,
圖書簡介
本書是作者在十多年多肽合成第一手經驗的基礎之上,結合大量相關文獻完成的。全書系統地介紹了多肽合成中最常見的副反應,其產生的機理,以及相應的解決方案。其中很多副反應的產生是在GMP生產條件下被發現並加以研究的,其形成機理與生產工藝的開發緊密相關。多肽雜質的形成對於多肽類API的GMP生產具有非常關鍵的影響,因此檢測和分析多肽雜質對成功的API工業生產至關重要。而掌握多肽副反應產生的機理、分析手段及相應的最佳化方案,則是整個多肽API工藝開發和生產環節中的核心要素。本書可供學術界與工業界相關人員參考使用。
前言
Thankstotheirsuperiorpropertiesintermsofhighselectivity,enhancedefficacy,
andappreciablesafety,peptide/peptidomimeticAPIsareplayingincreasingly
importantrolesinthedomainsofpharmaceuticalsandbiotechindustries
bymeansofhormones,neurotransmitters,growthfactors,ion-channelligands,
anti-infectives,andsoforth.Simulatedbytheever-improvingperformancesof
diversepeptidetherapeutics,moreandmoreintentionsarethereforelegitimate
tobeemphasizedonthepeptidedesignandsynthesis,endeavoredjointlyby
academicandindustrialefforts.
Someinherentlyspecificpropertiesofpeptidesynthesisrelativetothoseof
conventionalsmallmoleculescouldcauserathercomplicatedimpurityprofiles.
Moreover,challengesoriginatedfromtheimpurityformationcouldbeintensified
bythefactthatcertain,ifnotall,peptideproductionslacktheintermediary
purifyingeffectsintheupstreamprocesspriortochromatographicpurification
treatment.Needlesstomention,theimpactsofscalingeffectsonpeptideimpurity
formationaresometimestrickytobeelucidated.Alltheseintrinsicchallenges
legitimatethenecessitytopayconsiderableattentiontothesidereactions
thatoccurinpeptidesynthesis.
Asafirststep,theimpurityprofileofthesubjectpeptideAPIissupposedto
bethoroughlyscrutinized,particularlyinpeptidecGMPproductiontoidentify
thecriticalitiesofeachsingleimpurityagainstthepredefinedspecifications.
Theimpurities,whicharepotentiallycriticaltoqualityorbusinessshouldbe
emphasizedandpaidwithpeculiarattentions.Itissubsequentlypertinentto
correlatetheformationofthesecriticalimpuritieswiththecorrespondingside
reactionsandmakeeffortstoelucidatethemechanismoftheidentifiedsidereactions.
Solutionstotackletherelevantsidereactionscouldbedesignedbased
onthesolidin-depthunderstandingoftheoriginsandattributesofthesesidereactions.
Differentreactionstrategiesand/orprocessparametersaresupposedto
beinvestigatedinordertofitthedesignedmodelstothepurposeoftheimpurity
suppression.Bythismeans,thecriticalimpuritiesencounteredinpeptideproduction
couldbediminishedoreliminatedattheupstreamprocessandalleviate
thestressonthepurificationsteps.Hence,thequalityofthefinalpeptideAPIis
assuredandtheprocessperformancecouldbeenhancedaccordingly.
Itisimpliedfromtheaforementionedprocessoptimizationprocedurethat
aninsightintothepeptidesidereactionsisofcrucialimportancetothesuccess
ofpeptideAPImanufacturing.Ihavewrittenthisbooktoaddressthemost
frequentsidereactionsinpeptidesynthesisonthebasisofaplethoraofside
reactionsencounteredinmy10yearsofcommitmenttopeptidesynthesisresearch
andpeptideAPIproduction(whichissimultaneouslyunfortunateandfortunate).Thesidereactionsareclassifiedinaccordancewiththeirextrinsic
properties.Understandably,thesecategorizationsarenotabsolutelyorthogonal
andindeedsomeindependenceexists.Ineachchapterofthebook,thephenomenon
ofthesidereactionsiselucidated.Themechanismofeachsidereactionis
eitherdescribedortentativelyproposedforfurtherdiscussion.Finally,diverse
possiblesolutionsaresuggestedinordertotacklethereferredsidereactions.
Abundantliteraturereferencesarelistedforextensivereading.
Thesystematicallyorganizedknowledgebehindaplethoraofpeptide-related
sidereactionscouldbesortofhelpforthecolleagueswhoworkinthisarea,no
matterwhethertheyareacademicorproductionoriented.Itisespeciallymeaningful
forthecGMPproductioninwhichasingleout-of-specificationimpurity
couldruinthewholeproduction.Detectionandanalysisoftheimpuritiesin
peptidesynthesis,aswellastheircorrespondingsolutionisthereforehighlyaccentuated.
Howtofindoutthecluesfromacomplicatedimpurityprofilecould
understandablydecidetheoutcomesofthepeptideproduction.Hopefullythis
bookcouldbeofsomehelptotreattheproblemsraisedbypeptideimpurities,
particularlyintherealmofpeptideAPIproductionandcouldultimatelyassist
ustofightrelevantdiseases.
IwishtoexpressmythankstoBielefeldUniversity,LonzaAG,Ferring
Pharmaceuticals,andGenScriptInc.,theformerthreeinparticular,thatprovided
metheoutstandingplatformstoexplorethewonderlandofpeptide.Iam
gratefultoProf.Dr.NorbertSewaldandProf.FernandoAlbericio.Theformer
introducedmetothepeptiderealmasamentorandthelattergavemealot
ofinstructionsinmycareer.IalsoappreciatetheeffortsmadebyMalikLeila
andJ.rgenSj.grenfortheirreviewsofthemanuscript.FabrizioBadalassi(my
boss)offeredmetremendoussupportduringthepreparationofthebook.Last
butnottheleast,IamobligedtomywifeDanLiu,sincehersupportbestows
meallthestrengthtopursuemydream.
目錄
1PeptideFragmentation/DeletionSideReactions
1.1AcidolysisofPeptidesContainingN-Ac-N-alkyl-XaaMotif1
1.2Des-Ser/ThrImpuritiesInducedbyO-acylIsodipeptideBoc-Ser/Thr(Fmoc-Xaa)-OHasBuildingBlockforPeptideSynthesis3
1.3Acidolysisof-N-acyl-N-alkyl-Aib-Xaa-Bond6
1.4Acidolysisof-Asp-Pro-Bond9
1.5AutodegradationofPeptideN-TerminalH-His-Pro-Xaa-Moiety10
1.6AcidolysisofthePeptideC-TerminalN-Me-Xaa11
1.7AcidolysisofPeptideswithN-TerminalFITCModification12
1.8AcidolysisofThioamidePeptide14
1.9DeguanidinationSideReactiononArg18
1.10DKP(2,5-Diketopiperazine)Formation22
References28
2EliminationSideReactions
2.1EliminationofCysSulfhydrylSideChain33
2.2EliminationofPhosphorylatedSer/Thr37
References41
3PeptideGlobalDeprotection/Scavenger-InducedSideReactions
3.1Tert-ButylationSideReactiononTrpDuringPeptideGlobalDeprotection44
3.2TrpAlkylationbyResinLinkerCationsDuringPeptideCleavage/GlobalDeprotection47
3.3FormationofTrp-EDTandTrp-EDT-TFAAdductinPeptideGlobalDeprotection53
3.4TrpDimerizationSideReactionDuringPeptideGlobalDeprotection55
3.5TrpReductionDuringPeptideGlobalDeprotection57
3.6CysAlkylationDuringPeptideGlobalDeprotection58
3.7FormationofCys-EDTAdductsinPeptideGlobalDeprotectionReaction59
3.8PeptideSulfonationinSideChainGlobalDeprotectionReaction63
3.9PrematureAcmCleavageOffCys(Acm)andAcmS→OMigrationDuringPeptideGlobalDeprotection67
3.10MethionineAlkylationDuringPeptideSideChainGlobalDeprotectionwithDODTasScavenger69
3.11Thioanisole-InducedSideReactionsinPeptideSideChainGlobalDeprotection71
References73
4PeptideRearrangementSideReactions
4.1AcidCatalyzedAcylN→OMigrationandtheSubsequentPeptideAcidolysis77
4.2BaseCatalyzedAcylO→NMigration80
4.3His-Nim-InducedAcylMigration86
References93
5SideReactionsUponAminoAcid/PeptideCarboxylActivation
5.1FormationofN-AcylureaUponPeptide/AminoAcid-CarboxylActivationbyDIC95
5.2Uronium/GuanidiniumSaltCouplingReagents-InducedAminoGroupGuanidinationSideReactions97
5.3-LactamFormationUponArgActivationReaction100
5.4NCAFormationUponBoc/Z-AminoAcidActivation102
5.5DehydrationofSideChain-UnprotectedAsn/GlnDuringCarboxyl-Activation103
5.6FormationofH--Ala-OSufromHOSu-CarbodiimideReactionDuringAminoAcidCarboxyl-Activation105
5.7BenzotriazinoneRingOpeningandPeptideChainTerminationDuringCarbodiimide/HOOBtMediatedCouplingReactions107
5.8PeptideChainTerminationThroughtheFormationofPeptideN-TerminalUreainCDI-MediatedCouplingReaction108
5.9GuanidinoorHydantoin-2-ImideFormationfromCarbodiimideandNGrouponAminoAcid/Peptide110
5.10SideReactions-InducedbyCurtiusRearrangementonPeptideAcylAzide110
5.11FormationofPyrrolidinamide-InducedbyPyrrolidineImpuritiesinPhosphoniumSalt115
References116
6IntramolecularCyclizationSideReactions
6.1AspartimideFormation119
6.1.1FactorsThatInfluenceAspartimideFormation121
6.1.2SolutionsforAspartimideFormation127
6.2Asn/GlnDeamidationandOtherRelevantSideReactions137
6.2.1MechanismofAsn/GlnDeamidation137
6.2.2FactorsImpactingonAsn/GlnDeamidation140
6.2.3InfluencesofAsn/GlnDeamidationonPeptideChemicalSynthesis142
6.3PyroglutamateFormation144
6.4HydantoinFormation147
6.5SideReactionsonN-TerminalCys(Cam)andN-BromoacetylatedPeptide153References156
7SideReactionsonAminoGroupsinPeptideSynthesis
7.1N-AcetylationSideReactions163
7.2TrifluoroacetylationSideReactions166
7.3FormylationSideReactions171
7.3.1Trp(For)-InducedPeptideFormylation172
7.3.2FormicAcid-InducedPeptideFormylation173
7.3.3DMF-InducedPeptideFormylation175
7.4PeptideN-AlkylationSideReactions179
7.4.1ChloromethylResinInducedPeptideN-AlkylationSideReactions179
7.4.2PeptideN-AlkylationDuringDeblockingofN-UrethaneProtectingGroup180
7.4.3PeptideN-AlkylationDuringGlobalDeprotection183
7.4.4N-AlkylationSideReactiononN-TerminalHisviaAcetone-MediatedEnamination195
7.5SideReactionsDuringAminoAcidN-Protection(Fmoc-OSuInducedFmoc--Ala-OHandFmoc--Ala-AA-OHDipeptideFormation)196
References198
8SideReactionsonHydroxylandCarboxylGroupsinPeptideSynthesis
8.1SideReactionsonAsp/GluSideChainandPeptideBackboneCarboxylate203
8.1.1Base-CatalyzedAsp/Glu(OBzl)TransesterificationSideReactionDuringtheLoadingofChloromethylResin203
8.1.2EsterificationSideReactionsonAsp/GluDuringPeptidylResinCleavageandProductPurification204
8.2SideReactionsonSer/ThrSideChainHydroxylGroups207
8.2.1AlkylationSideReactionsonSer/ThrSideChainHydroxylGroups207
8.2.2AcylationSideReactionsonSer/ThrSideChainHydroxylGroups208
8.2.3EliminationSideReactionsonSer/Thr210
8.2.4N-TerminalSer/Thr-InducedOxazolidoneFormationSideReactions212
8.2.5Ser/Thr-InducedRetroAldolCleavageSideReaction214References215
9PeptideOxidation/ReductionSideReactions
9.1OxidationSideReactionsonCys217
9.2OxidationSideReactionsonMet223
9.3OxidationSideReactionsonTrp227
9.4OxidationSideReactionsonOtherAminoAcidsandatNonsyntheticSteps228
9.5PeptideReductionSideReactions230
References231
10RedundantAminoAcidCouplingSideReactions
10.1DipeptideFormationDuringAminoAcidN-FmocDerivatization235
10.2RedundantAminoAcidCouplingviaPrematureFmocDeprotection238
10.2.1Lys-Nε-InducedFmocPrematureCleavage239
10.2.2N-Proline-InducedFmocPrematureCleavage242
10.2.3DMF/NMP-InducedFmocPrematureCleavage245
10.2.4ResidualPiperidine-InducedFmocPrematureCleavage246
10.2.5DMAP/DIEA-InducedFmocPrematureCleavage247
10.2.6Hydrogenation-InducedFmocPrematureCleavage248
10.2.7FmocDeblockingintheStartingMaterial248
10.3RedundantAminoAcidCouplingInducedbyNCAFormation249
10.4His-NimPromotedGlyRedundantIncorporation250
10.5RedundantCouplingInducedbytheUndesiredAminoAcid-CTCResinCleavage250
10.6RedundantAminoAcidCouplingInducedbyInsufficientResinRinsing252
10.7RedundantAminoAcidCouplingInducedbyOveracylationSideReaction253
References254
11PeptideRacemization
11.1PeptideRacemizationMechanism257
11.1.1PeptideRacemizationviaOxazol-5(4H)-oneFormation257
11.1.2PeptideRacemizationviaEnolateFormation258
11.1.3PeptideRacemizationviaDirectHAbstraction259
11.1.4PeptideRacemizationviaAspartimideFormation260
11.1.5Acid-CatalyzedPeptideRacemization260
11.2RacemizationinPeptideSynthesis261
11.2.1AminoAcidswithaHighTendencyofRacemizationinPeptideSynthesis261
11.2.2DMAP-InducedRacemization267
11.2.3MicrowaveIrradiation-InducedRacemization268
11.2.4RacemizationDuringPeptideSegmentCondensation268
11.3StrategiestoSuppressRacemizationinPeptideSynthesis269
11.3.1AminoAcidN-ProtectingGroup269
11.3.2AminoAcidSideChainProtectingGroup274
11.3.3CouplingReagent276
11.3.4CouplingTactics282
11.3.5Solvent285
11.3.6Base285
11.3.7AminoAcidActivationMode286
11.3.8Temperature287
11.3.9Cu(II)SaltAdditive287References288
12SideReactionsinPeptidePhosphorylation
12.1FormationofH-PhosphonateSideProduct293
12.2FormationofPyrophosphateSideProduct296References297
13CysDisulfide-RelatedSideReactionsinPeptideSynthesis
13.1DisulfideScramblingviaThiol-DisulfideExchange299
13.2DisulfideDegradationandConsequentTrisulfideandLanthionineFormation302
13.2.1DisulfideDegradationPattern302
13.2.2TrisulfideFormation303
13.2.3LanthionineFormation308
References309
14Solvent-InducedSideReactionsinPeptideSynthesis
14.1DCM-InducedSideReaction311
14.2DMF-InducedSideReaction312
14.2.1DMF-InducedN-FormylpiperidineFormation312
14.2.2DMF-InducedFormylationSideReactions313
14.2.3DMF-InducedAcidChlorideFormationSideReactions313
14.3Methanol/Ethanol-InducedSideReactions315
14.3.1Methanol-InducedEsterificationSideReactions315
14.3.2Methanol-InducedN-AlkylationSideReactionsinCatalyticHydrogenation315
14.4Acetonitrile-InducedSideReaction316
14.5Acetone-InducedSideReaction317
14.6MTBE-InducedSideReaction319
14.7TFE-InducedSideReaction319
References320
AppendixI
MolecularWeightDeviationofPeptide
Impurity323
AppendixIIListofAbbreviations347
SubjectIndex353