基本介紹
內容簡介,作者簡介,目錄,
內容簡介
《MATLAB線性代數簡明教程(Linear Algebra Using MATLAB)》共分為8章,主要內容為:第1章介紹了MATLAB軟體的桌面和MATLAB編程基礎,第2章~第7章分別介紹了線性代數的各種運算,包括矩陣運算、求解線性方程、向量空間和子空間、投影、*小二乘逼近、行列式、特徵值和特徵向量、相似矩陣和奇異值分解等。此外,基於圖像處理與線性代數有著密戒判籃切的關係,頸廈料第8章簡要介紹了線性代數在圖像處理中的套用。本再檔企估書結合線性代數理論與MATLAB語言介紹線性代數的套用,列舉了豐富的MATLAB代碼實例,不僅可以加深對線性代數理論的理解,而且可以提高套用線性代數知識解決實際問題的能力。
《MATLAB線全說灶性代數簡明教程(Linear Algebra Using MATLAB)》可作為高等院校理工科專業基礎課駝嚷罪踏教材,也是運用MATLAB語言與數學知識解決實際問題的工具書,可供從事經濟、物理、系統控制、信號處盛糊糠理、圖像處理等領域專全催業技術人員參考。
作者簡介
李爽,武漢大學,副教授,長期從事數字圖像處理、遙感圖像分析與解譯、離散數學、線性代數相關的教學工作。研究方向為遙感數字圖像預處理、分割、分類、圖像質量評價。
目錄
Chapter 1Fundament for MATLAB1
1.1MATLAB Desktop1
1.2Vectors and Matrices7
1.3MATLAB Programming11
Chapter 2Introduction to Vectors and Matrices20
2.1Vectors and Linear Combination20
2.2Lengths and Dot Products28
2.3Matrices31
Chapter 3Solving Linear Equations40
3.1Vectors and Linear Equations40
3.2The Idea of Elimination45
3.3Elimination Using Matrices52
3.4Inverse Matrices58
Chapter 4Vector Spaces and Subspaces62
4.1Spaces of Vectors62
4.2The Nullspace of matrix64
4.3The Rank and Linear Dependence68
Chapter 5Orthogonality71
5.1 Projections71
5.2Least Squares Approximations75
5.3Orthogonal Bases and Gram-Schmidt Process80
Chapter 6Determinants85
6.1 The Properties of Determinants85
6.2Permutations and Cofactors92
6.3Cramer’s Rule98
Chapter 7Eigenvalues and Eigenvectors102
7.1Introduction to Eigenvalues102
7.2Similar matrices and diagonalization of matrices105
7.3Singular Value Decomposition109
Chapter 8Linear Algebra in Image Processing112
8.1Digital Image Representation112
8.2Geometric Transformation using Matrix Operation114
8.3Image Restoration using Inverse Matrix117
8.4Image Fusion using Principal Component Analysis119
8.5Image Compression using Singular Value Decomposition120
References122
6.1 The Properties of Determinants85
6.2Permutations and Cofactors92
6.3Cramer’s Rule98
Chapter 7Eigenvalues and Eigenvectors102
7.1Introduction to Eigenvalues102
7.2Similar matrices and diagonalization of matrices105
7.3Singular Value Decomposition109
Chapter 8Linear Algebra in Image Processing112
8.1Digital Image Representation112
8.2Geometric Transformation using Matrix Operation114
8.3Image Restoration using Inverse Matrix117
8.4Image Fusion using Principal Component Analysis119
8.5Image Compression using Singular Value Decomposition120
References122