黃崇湘,男,1977年4月生,四川大學空天科學與工程學院教授、博士生導師(固體力學與材料學),畢業於中國科學院金屬研究所,工學博士。
基本介紹
- 中文名:黃崇湘
- 出生日期:1977年4月
- 畢業院校:中國科學院金屬研究所
- 主要成就:2008年獲德國“洪堡(AvH)”基金會資助
2012年入選教育部“新世紀優秀人才支持計畫”
2013年入選第十批“四川省學術和技術帶頭人後備人選” - 職稱:教授
個人簡介,研究方向,教育經歷,研究經歷,研究項目,個人榮譽,代表性論文,
個人簡介
黃崇湘博士2006年畢業於中國科學院金屬研究所,獲工學博士學位。曾先後工作於中國科學院金屬研究所、德國亞琛工業大學、香港城市大學和美國北卡羅萊那州立大學等知名研究機構和大學。主要從事飛行器結構強度和複雜環境下材料的力學行為與損傷破壞研究,在Materials Today、Acta Materialia、International Journal of Plasticity 等國際期刊上發表論文近90篇,其中SCI論文80餘篇。論文總共他引2000多次,單篇第一作者論文最高SCI他引160多次。主持/參與包括國家自然科學基金(重點/面上/青年)、國家重大科研儀器設備研製專項、國防科技、教育部創新團隊等多個項目。
研究方向
1. 金屬材料的強韌化與變形動力學
2. 微/納米異構金屬材料的製備、結構表征與力學行為
3. 飛行器熱端部件材料的設計、製備與評價
4. 航空金屬材料的動態力學行為、疲勞與失效分析
教育經歷
2000/09-2006/06 中國科學院金屬研究所 材料物理與化學 博士(碩博連讀)
1996/09-2000/06 瀋陽工業大學 焊接工藝及設備 學士
研究經歷
2013/06-至 今 教授/博導 四川大學空天科學與工程學院
2013/09-2014/08 訪問學者 美國北卡羅萊納州立大學
2011/06-2011/08 高級研究助理 香港城市大學
2010/12-2013/05 教授/博導 四川大學建築與環境學院
2008/09-2010/06 洪堡研究員 德國亞琛工業大學
2006/07-2008/08 助理研究員 中國科學院金屬研究所
研究項目
1. 國家自然科學基金(重點):“金屬材料跨尺度異構的強韌化及催您漏達微結構調控”
2. 國家自然科學基金(面上):“新型高強高韌微/納米疊層金屬材料的界面力學行為與強韌化機理”
3. 國家自然科學基金(面上):“低層錯能納米金屬的力學行為及變形動力學”
4. 國家自然科學基罪廈婚金(青年):“超細晶奧氏體不鏽鋼的形變誘導相變強韌化機制”
5. 教育部“新世紀優秀人才支持計畫”:“新型材料的力學行為”
6. 四川省青年科技基金:“新型高性能多尺度金屬材料臭腿糊的力學特性與強韌化機理”
7. 國家重大科研儀器設備研製專項:晚幾旬府“複雜載荷-環境下超長壽命疲勞振動加速綜合實驗系統研製”
8. 教育部“長江學者計畫創新團隊”:慨尋燥“動力災變力學與工程防災減災”灶灶重
個人榮譽
2020年:2019年Acta 期刊全球傑出審稿人
2013年:入選第十批“四川省學術和技術帶頭人後備人選”
2012年:入選教育部“新世紀優秀人才計畫”
2011年:Elsevier出版嚷享公司Acta Materialia "Top 50 Highly Cited Articles By Chinese Mainland Authors 2006-2010"
2008年:德國“洪堡(AvH)”學者
2008年:中國科學院瀋陽分院第一屆青年科技人才獎
代表性論文
1. Y.F. Wang, C.X. Huang*, Z.K. Li, X.T. Fang, W.S. Wang, Q. He, F.J. Guo, Y.T. Zhu, Shear band stability and uniform elongation of gradient structured materials: Role of lateral constraint, Extreme Mechanics Letters, 37: 100686, 2020.
2. Y.F. Wang, C.X. Huang*, Y.S. Li, F.J. Guo, Q. He, M.S. Wang, X.L. Wu, R.O. Scattergood, Y.T. Zhu. Dense dispersed shear bands in gradient-structured Ni. International Journal of Plasticity, 124:186-198, 2020.
3. Y.F. Wang, C.X. Huang*, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 174:19-23, 2020.
4. G.J. Guo, Y.F. Wang, M.S. Wang, Q. He, H. Ran, C.X. Huang*, Y.T. Zhu: Hetero-deformation induced strengthening and toughening of pure iron with inverse and multi-gradient structures, Materials Science and Engineering A, 782: 139256, 2020.
5. Q. He, Y.F. Wang, M.S. Wang, F.J. Guo, Y. Wen, C.X. Huang*: Improving strength-ductility synergy in 301 stainless steel by combing gradient structure and TRIP effect, Materials Science and Engineering A, 780: 139146, 2020.
6. Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang*, Y.T. Zhu. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. International Journal of Plasticity, 123:196-207, 2019.
7. Y.F. Wang, C.X. Huang*, Q. He, F.J. Guo, M.S. Wang, L.Y. Song, Y.T. Zhu. Heterostructure induced dispersive shear bands in heterostructured Cu. Scripta Materialia, 170: 76-80, 2019.
8. Y.F. Wang, F.J. Guo, Q. He, L.Y. Song, M.S. Wang, A.H. Huang, Y.S. Li, C.X. Huang*. Synergetic deformation-induced extraordinary softening and hardening in gradient copper. Materials Science and Engineering A, 752: 217-222, 2019.
9. A.H. Huang, Y.F. Wang, M.S. Wang, L.Y. Song, Y.S. Li, L. Gao, C.X. Huang*, Y.T. Zhu: Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment. Materials Science and Engineering A, 746: 211-216, 2019.
10. C.X. Huang*, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoeppel, M, Goeken, X.L. Wu, H.J. Gao, Y.T. Zhu: Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 21:713-719, 2018.
11. Y.F. Wang, M.X. Yang, X.L. Ma, M.S. Wang, K. Yin, A.H. Huang, C.X. Huang*: Improved back stress and synergetic strain hardening in coarse-grain/nanostructured laminates. Materials Science and Engineering A, 727: 113-118, 2018.
12. Y.F. Wang, C.X. Huang*, M.S. Wang, Y.S. Li, Y.T. Zhu: Quantifying the synergetic strengthening in gradient material. Scripta Materialia, 150: 22-25, 2018.
13. J.G. Li, Y.L. Li, C.X. Huang, T. Suo, Q.M. Wei: On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies. Acta Materialia, 141: 163-182, 2017.
14. X.W. Qiu, W.J. Wu, C.G. Liu, Y.P. Zhang, C.X. Huang*: Corrosion performance of Al2CrFeCoxCuNiTi elements equimolar alloy coatings in acid liquids, Journal of alloys and Compounds, 7088:353-357, 2017.
15. W.Q. Cao, C.X. Huang*, C. Wang, H. Dong, Y.Q. Weng: Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential, Scientific Reports, 7: 9199, 2017.
16. W.Q. Cao, M.D. Zhang, C.X. Huang*, S.Y. Xiao, H. Dong, Y.Q. Weng: Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels, Scientific Reports, 7: 41459, 2017.
17. X.L. Ma, C.X. Huang*, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, Y.T. Zhu: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 116: 43-52, 2016.
18. J.G. Li, T. Suo, C.X. Huang*, Y.L. Li, H.T. Wang, J.B. Liu: Adiabatic shear localization on nanostructured face centered cubic metals under uniaxial compression. Materials and Design, 105: 262-267, 2016.
19. J. An, Y.F. Wang, Q.Y. Wang, W.Q. Cao, C.X. Huang*: The effect of reducing specimen thickness on the mechanical behavior of cryo-rolled ultrafine-grained copper, Materials Science and Engineering A, 651:1-7, 2016.
20. X.W. Qiu, C.X. Huang*, W.J. Wu, C.G. Liu, Y.P. Zhang: Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy, Journal of alloys and Compounds, 658:1-5, 2016.
21. X.L. Ma, C.X. Huang*, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu: Strain hardening and ductility in a coarse-grain/nanostructure laminate material, Scripta Materialia, 103:57-60, 2015.
22. C.X. Huang*, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, Y.T. Zhu: An ideal ultrafine-grained structure for high strength and high ductility. Materials Research Letters, 3(2): 88-94, 2015.
23. C.X. Huang*, W.P. Hu, Q.Y. Wang: Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1at%Al alloy with low stacking fault energy. Materials Science and Engineering A, 611:274-279, 2014.
24. C. Wang, W.Q. Cao, J, Shi, C.X. Huang*, H. Dong: Deformation microstructures and strengthening mechanisms of ultrafine grained duplex medium-Mn steel. Materials Science and Engineering A, 562:89-95, 2013.
25. C.X. Huang*, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein: The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing. Materials Science and Engineering A 556:638-647, 2012.
26. M.X. Yang, G. Yang, Z.D. Liu, C. Wang, C.X. Huang*: Significant enhancement of strength in a lamellar-type nanostructured maraging steel subjected to equal-channel angular pressing for 12 passes. Materials Science and Engineering A, 550:429-433, 2012.
27. C.X. Huang*, G. Yang, C. Wang, Z.F. Zhang, and S.D. Wu: Mechanical behaviors of ultrafine-grained austenitic stainless steel produced by equal channel angular pressing. Metallurgical Materials Transaction A, 42(7): 2061-2071, 2011.
28. G. Yang, C.X. Huang*, C. Wang, L.Y. Zhang, C. Hu, Z.F. Zhang, S.D. Wu: Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing. Materials Science and Engineering A, 515(1-2): 199-206, 2009.
29. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang: Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Materials Science and Engineering A, 485(1-2): 643-650, 2008.
30. C.X. Huang, S.D. Wu, G.Y. Li, S.X. Li: Influences of cyclic deformation and subsequent aging treatment on the tensile properties of Cu processed by equal channel angular pressing. Materials Science and Engineering A, 483-484(IS): 433-436, 2008.
31. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, S.X. Li: Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation. Journal Materials Research, 22(3): 724-729, 2007.
32. C.X. Huang*, G. Yang, B. Deng, S.D. Wu, S.X. Li, Z.F. Zhang: Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing. Philosophical Magazine, 87(31): 4949-4971, 2007.
33. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Materialia, 54(3): 655-665, 2006.
2012年:入選教育部“新世紀優秀人才計畫”
2011年:Elsevier出版公司Acta Materialia "Top 50 Highly Cited Articles By Chinese Mainland Authors 2006-2010"
2008年:德國“洪堡(AvH)”學者
2008年:中國科學院瀋陽分院第一屆青年科技人才獎
代表性論文
1. Y.F. Wang, C.X. Huang*, Z.K. Li, X.T. Fang, W.S. Wang, Q. He, F.J. Guo, Y.T. Zhu, Shear band stability and uniform elongation of gradient structured materials: Role of lateral constraint, Extreme Mechanics Letters, 37: 100686, 2020.
2. Y.F. Wang, C.X. Huang*, Y.S. Li, F.J. Guo, Q. He, M.S. Wang, X.L. Wu, R.O. Scattergood, Y.T. Zhu. Dense dispersed shear bands in gradient-structured Ni. International Journal of Plasticity, 124:186-198, 2020.
3. Y.F. Wang, C.X. Huang*, X.T. Fang, H.W. Höppel, M. Göken, Y.T. Zhu. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 174:19-23, 2020.
4. G.J. Guo, Y.F. Wang, M.S. Wang, Q. He, H. Ran, C.X. Huang*, Y.T. Zhu: Hetero-deformation induced strengthening and toughening of pure iron with inverse and multi-gradient structures, Materials Science and Engineering A, 782: 139256, 2020.
5. Q. He, Y.F. Wang, M.S. Wang, F.J. Guo, Y. Wen, C.X. Huang*: Improving strength-ductility synergy in 301 stainless steel by combing gradient structure and TRIP effect, Materials Science and Engineering A, 780: 139146, 2020.
6. Y.F. Wang, M.S. Wang, X.T. Fang, F.J. Guo, H.Q. Liu, R.O. Scattergood, C.X. Huang*, Y.T. Zhu. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. International Journal of Plasticity, 123:196-207, 2019.
7. Y.F. Wang, C.X. Huang*, Q. He, F.J. Guo, M.S. Wang, L.Y. Song, Y.T. Zhu. Heterostructure induced dispersive shear bands in heterostructured Cu. Scripta Materialia, 170: 76-80, 2019.
8. Y.F. Wang, F.J. Guo, Q. He, L.Y. Song, M.S. Wang, A.H. Huang, Y.S. Li, C.X. Huang*. Synergetic deformation-induced extraordinary softening and hardening in gradient copper. Materials Science and Engineering A, 752: 217-222, 2019.
9. A.H. Huang, Y.F. Wang, M.S. Wang, L.Y. Song, Y.S. Li, L. Gao, C.X. Huang*, Y.T. Zhu: Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment. Materials Science and Engineering A, 746: 211-216, 2019.
10. C.X. Huang*, Y.F. Wang, X.L. Ma, S. Yin, H.W. Hoeppel, M, Goeken, X.L. Wu, H.J. Gao, Y.T. Zhu: Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 21:713-719, 2018.
11. Y.F. Wang, M.X. Yang, X.L. Ma, M.S. Wang, K. Yin, A.H. Huang, C.X. Huang*: Improved back stress and synergetic strain hardening in coarse-grain/nanostructured laminates. Materials Science and Engineering A, 727: 113-118, 2018.
12. Y.F. Wang, C.X. Huang*, M.S. Wang, Y.S. Li, Y.T. Zhu: Quantifying the synergetic strengthening in gradient material. Scripta Materialia, 150: 22-25, 2018.
13. J.G. Li, Y.L. Li, C.X. Huang, T. Suo, Q.M. Wei: On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies. Acta Materialia, 141: 163-182, 2017.
14. X.W. Qiu, W.J. Wu, C.G. Liu, Y.P. Zhang, C.X. Huang*: Corrosion performance of Al2CrFeCoxCuNiTi elements equimolar alloy coatings in acid liquids, Journal of alloys and Compounds, 7088:353-357, 2017.
15. W.Q. Cao, C.X. Huang*, C. Wang, H. Dong, Y.Q. Weng: Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential, Scientific Reports, 7: 9199, 2017.
16. W.Q. Cao, M.D. Zhang, C.X. Huang*, S.Y. Xiao, H. Dong, Y.Q. Weng: Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels, Scientific Reports, 7: 41459, 2017.
17. X.L. Ma, C.X. Huang*, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, Y.T. Zhu: Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 116: 43-52, 2016.
18. J.G. Li, T. Suo, C.X. Huang*, Y.L. Li, H.T. Wang, J.B. Liu: Adiabatic shear localization on nanostructured face centered cubic metals under uniaxial compression. Materials and Design, 105: 262-267, 2016.
19. J. An, Y.F. Wang, Q.Y. Wang, W.Q. Cao, C.X. Huang*: The effect of reducing specimen thickness on the mechanical behavior of cryo-rolled ultrafine-grained copper, Materials Science and Engineering A, 651:1-7, 2016.
20. X.W. Qiu, C.X. Huang*, W.J. Wu, C.G. Liu, Y.P. Zhang: Structure and properties of AlCrFeNiCuTi six principal elements equimolar alloy, Journal of alloys and Compounds, 658:1-5, 2016.
21. X.L. Ma, C.X. Huang*, W.Z. Xu, H. Zhou, X.L. Wu, Y.T. Zhu: Strain hardening and ductility in a coarse-grain/nanostructure laminate material, Scripta Materialia, 103:57-60, 2015.
22. C.X. Huang*, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, Y.T. Zhu: An ideal ultrafine-grained structure for high strength and high ductility. Materials Research Letters, 3(2): 88-94, 2015.
23. C.X. Huang*, W.P. Hu, Q.Y. Wang: Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1at%Al alloy with low stacking fault energy. Materials Science and Engineering A, 611:274-279, 2014.
24. C. Wang, W.Q. Cao, J, Shi, C.X. Huang*, H. Dong: Deformation microstructures and strengthening mechanisms of ultrafine grained duplex medium-Mn steel. Materials Science and Engineering A, 562:89-95, 2013.
25. C.X. Huang*, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein: The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper-aluminum alloys processed by equal channel angular pressing. Materials Science and Engineering A 556:638-647, 2012.
26. M.X. Yang, G. Yang, Z.D. Liu, C. Wang, C.X. Huang*: Significant enhancement of strength in a lamellar-type nanostructured maraging steel subjected to equal-channel angular pressing for 12 passes. Materials Science and Engineering A, 550:429-433, 2012.
27. C.X. Huang*, G. Yang, C. Wang, Z.F. Zhang, and S.D. Wu: Mechanical behaviors of ultrafine-grained austenitic stainless steel produced by equal channel angular pressing. Metallurgical Materials Transaction A, 42(7): 2061-2071, 2011.
28. G. Yang, C.X. Huang*, C. Wang, L.Y. Zhang, C. Hu, Z.F. Zhang, S.D. Wu: Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing. Materials Science and Engineering A, 515(1-2): 199-206, 2009.
29. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, Z.F. Zhang: Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP. Materials Science and Engineering A, 485(1-2): 643-650, 2008.
30. C.X. Huang, S.D. Wu, G.Y. Li, S.X. Li: Influences of cyclic deformation and subsequent aging treatment on the tensile properties of Cu processed by equal channel angular pressing. Materials Science and Engineering A, 483-484(IS): 433-436, 2008.
31. C.X. Huang*, G. Yang, Y.L. Gao, S.D. Wu, S.X. Li: Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation. Journal Materials Research, 22(3): 724-729, 2007.
32. C.X. Huang*, G. Yang, B. Deng, S.D. Wu, S.X. Li, Z.F. Zhang: Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing. Philosophical Magazine, 87(31): 4949-4971, 2007.
33. C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Materialia, 54(3): 655-665, 2006.