馬文君(北京大學特聘研究員)

本詞條是多義詞,共3個義項
更多義項 ▼ 收起列表 ▲

馬文君,北京大學物理學院重離子所特聘研究員。

基本介紹

  • 中文名:馬文君
  • 畢業院校:北京航空航天大學 
  • 學位/學歷:博士
  • 專業方向:超強雷射與納米靶材的相互作用及套用 
  • 職務:北京大學特聘研究員 
人物經歷,教育背景,工作經歷,研究領域,主要成果,發表文章,

人物經歷

教育背景

  • 2004/9–2009/5, 中科院物理所, 凝聚態物理, 博士, 導師:解思深院士
  • 2000/9–2004/7, 北京航空航天大學, 套用物理, 學士

工作經歷

  • 2015/8-至今,北京大學,物理學院,重離子所,特聘研究員
  • 2011/1-2015/7,德國慕尼黑大學,物理系,博士後
  • 2010/1-2010/12,德國馬普所,量子光學所,馬普學者

研究領域

  • 超強雷射與納米靶材的相互作用
  • 超強雷射驅動的質子、重離子源的實驗研究
  • 利用超強雷射與納米靶材產生高亮度的極紫外光、X光、伽馬光輻射及其在材料學於凝聚態物理中的套用
  • 雷射驅動離子源在離子癌症治療當中的套用
目前承擔的科研項目
  • 國家科技部重大儀器開發專項,“超小型雷射離子加速器及關鍵技術研究”,2012YQ030142,2012/01-2017/12,6219萬。
  • 國家自然基金重點項目,61631001,“醫用小型雷射質子加速器理論與關鍵技術”,2017/01-2022/12,275萬。

主要成果

在納米材料與超短超強雷射物理領域都有著豐富的研究經驗與突出的學術成果。博士論文“巨觀尺度碳納米管結構的製備及物性研究”曾獲北京市優秀博士論文獎。博士畢業後,研究的主要方向是雷射驅動離子加速與輻射產生。目前為止已經在Physical Review letters, Physics of Plasmas, Nanoletters, Advanced Materials 等頂級專業雜誌上先後發表40 余篇文章, SCI被引用超過1200 次,H 因子達到17。研究的主要特色是將大量先進納米材料用於超強雷射電漿物理實驗當中,在雷射驅動離子加速、超亮極紫外脈衝產生、以及高能輻射等領域獲得了一批有國際影響力的結果。曾多次在國際最先進的高功率雷射器上主持、參與大型國際合作實驗,有著較豐富的強場物理實驗經驗和出色的實驗組織領導能力。回國後還致力於雷射驅動離子源離子癌症治療當中的套用。近期代表性成果有:
  1. 利用超強雷射與固體納米薄膜靶材相互作用實現高效的離子加速
在德國和北大工作期間。分別建立了兩個國際先進的納米材料製備實驗室,發展完善了類金剛石納米薄膜的製備方法並負責實驗用靶的研製,製備出了厚度最小只有3納米的類金剛石薄膜。這種納米薄膜靶材是實現光壓離子加速機制的關鍵性技術之一。利用這些納米靶材,所在研究小組系統性地研究了光強在1019W/cm2量級的超高對比度雷射脈衝與納米厚度薄膜靶的相互作用,利用光壓加速機制獲得了具有超小發散度的10 MeV以上的質子(Physics of Plasmas 20(7):073113)。參與完成在世界上首次單發高劑量雷射加速離子束的納秒級生物學效應的實驗研究(Applied Physics Letters101(24):243701)。該研究成果曾作為APL封面,在德國獲得了重大反響,隨後在Munich-Centre for Advanced Photonics (MAP) 和Centre for Advanced Laser Applications (CALA) 項目中分別獲得20萬歐元/年和1000萬歐元/5年的經費資助,目標為2017年實現在活體生物上進行離子癌症治療實驗。
  1. 利用納米泡沫材料作為等離子透鏡產生高能離子
自2011年起進一步發展了碳納米管生長技術,製備出了平均密度為1%-5%固體密度的碳納米管泡沫薄膜。這種薄膜由大量碳納米管無序搭接構成,在納米尺度具有類似於泡沫的結構,但在微米尺度又是高度均勻的,是近乎完美的臨界密度電漿靶材。利用這種靶材可以有效增強光壓加速過程,將離子能量提高一倍以上。本人所在研究組在英國盧瑟福實驗室的500 TW雷射器上,完美地證實了理論預測的能量增益,該結果對雷射驅動離子加速的研究和套用有著重大的意義,發表在Physical Review Letters上(PhysRevLett.115. 064801)。這一結果引起了國際同行廣泛關注,得到PRL Editor Suggestion重點推薦和APS專題報導。
  1. 利用納米薄膜靶產生亞周期阿秒脈衝和高次諧波:
阿秒脈衝是目前人類能夠產生和有效控制的最短的光脈衝。利用這種脈衝,可以在阿秒(10-18­­秒)尺度上探測原子或固體中電子的運動。阿秒脈衝領域一個重要的研究方向是高亮度的孤立阿秒脈衝的產生。本人利用精巧設計的多層納米薄膜靶,在世界上首次產生了高亮度的孤立亞周期阿秒脈衝(Physical Review Letters 113(23):235002)。這種新型阿秒脈衝來自於超強雷射與多層納米薄膜靶相互作用時產生的高密度的相對論速度電子片的單向橫向運動整個脈衝中電磁場只震盪半個周期,與傳統的利用氣體原子閾上電離或固體表面電漿震蕩產生阿秒脈衝的方法有根本性的不同。其亮度比通常的阿秒脈衝高兩到三個量級,可用於某些需要高亮度的低重頻實驗中的超快過程的探測。
  1. 雷射驅動離子源在離子束癌症治療當中的套用
離子束治癌是當今腫瘤治療最科學、最有效的方法之一。但目前基於常規加速器的離子治療設備體積龐大、造價昂貴、維護和運行費用不菲。由高功率雷射器和固體靶組成的小型雷射質子加速器在可以像常規射頻離子加速器那樣產生高能質子,而其在價格和體積上具有無可比擬的優勢。未來醫用的質子雷射加速系統不僅造價遠低於目前常規的加速設備,而且體積小,維護方便、運行費用低廉,可放置於大型綜合性醫院,將十分有利於質子治癌和診斷技術的普及和推廣。目前國際上在實驗中已獲得了最高能量為93MeV的質子束(我組目前最高58MeV),可將劑量投放在最深為7cm的組織處。這樣的質子束在束流控制技術成熟後可套用於眼部、舌部、鼻部、口腔等難以手術的惡性腫瘤的治療,也可用於乳腺癌、前列腺癌等淺層癌症治療。未來幾年內,隨著更高功率雷射器的相繼建成,可獲得超過200MeV的質子束,有希望進行全身腫瘤治療。

發表文章

  1. M.L. Zhou, B. Liu, R.H. Hu, Y.R. Shou, C. Lin, H.Y. Lu, Y.R. Lu, Y.Q. Gu, W.J. Ma, X.Q. Yan, Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses, Phys Plasmas, 2016, 23(8).
  2. S. Zhao, C. Lin, J.-E. Chen, W.-J. Ma, J.-J. Wang, X.-Q. Yan, Using Target Ablation for Ion Beam Quality Improvement, Chinese Physics Letters, 2016, 33(3).
  3. B. Liu, J. Meyer-ter-Vehn, K.U. Bamberg, W.J. Ma, J. Liu, X.T. He, X.Q. Yan, H. Ruhl, Ion wave breaking acceleration, Physical Review Accelerators and Beams, 2016, 19(7).
  4. J.H. Bin, W.J. Ma, H.Y. Wang, M.J.V. Streeter, C. Kreuzer, D. Kiefer, M. Yeung, S. Cousens, P.S. Foster, B. Dromey, X.Q. Yan, R. Ramis, J. Meyer-ter-Vehn, M. Zepf, J. Schreiber, Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas, Phys Rev Lett, 2015, 115(6).
  5. H.Y. Wang, C. Lin, B. Liu, Z.M. Sheng, H.Y. Lu, W.J. Ma, J.H. Bin, J. Schreiber, X.T. He, J.E. Chen, M. Zepf, X.Q. Yan, Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction, Phys Rev E, 2014, 89(1).
  6. W.J. Ma, J.H. Bin, H.Y. Wang, M. Yeung, C. Kreuzer, M. Streeter, P.S. Foster, S. Cousens, D. Kiefer, B. Dromey, X.Q. Yan, J. Meyer-ter-Vehn, M. Zepf, J. Schreiber, Bright Subcycle Extreme Ultraviolet Bursts from a Single Dense Relativistic Electron Sheet, Phys Rev Lett, 2014, 113(23).
  7. H.Y. Wang, X.Q. Yan, J.E. Chen, X.T. He, W.J. Ma, J.H. Bin, J. Schreiber, T. Tajima, D. Habs, Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse, Phys Plasmas, 2013, 20(1).
  8. Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, Y. Hu, W. Ma, H. Dong, J. Li, S. Xie, A Repeated Halving Approach to Fabricate Ultrathin Single-Walled Carbon Nanotube Films for Transparent Supercapacitors, Small, 2013, 9(4): 518-524.
  9. J.H. Bin, W.J. Ma, K. Allinger, H.Y. Wang, D. Kiefer, S. Reinhardt, P. Hilz, K. Khrennikov, S. Karsch, X.Q. Yan, F. Krausz, T. Tajima, D. Habs, J. Schreiber, On the small divergence of laser-driven ion beams from nanometer thick foils, Phys Plasmas, 2013, 20(7).
  10. Z. Niu, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, W. Zhou, S. Xie, High-Strength Laminated Copper Matrix Nanocomposites Developed from a Single-Walled Carbon Nanotube Film with Continuous Reticulate Architecture, Advanced Functional Materials, 2012, 22(24): 5209-5215.
  11. G. Liu, W.-j. Ma, X.-f. An, S.-s. Xie, X.-s. Yi, Electromagnetic interference shielding of single-wall carbon nanotube buckypaper/epoxy composites, New Carbon Materials, 2012, 27(2): 100-104.
  12. J. Bin, K. Allinger, W. Assmann, G. Dollinger, G.A. Drexler, A.A. Friedl, D. Habs, P. Hilz, R. Hoerlein, N. Humble, S. Karsch, K. Khrennikov, D. Kiefer, F. Krausz, W. Ma, D. Michalski, M. Molls, S. Raith, S. Reinhardt, B. Roeper, T.E. Schmid, T. Tajima, J. Wenz, O. Zlobinskaya, J. Schreiber, J.J. Wilkens, A laser-driven nanosecond proton source for radiobiological studies, Appl Phys Lett, 2012, 101(24).
  13. P.G. Thirolf, D. Habs, M. Gross, K. Allinger, J. Bin, A. Hening, D. Kiefer, W. Ma, J. Schreiber, Laser Ion Acceleration: Status and Perspectives for Fusion, in: 5th International Conference on FUSION11, St Malo, FRANCE, 2011.
  14. P.G. Thirolf, D. Habs, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, W. Ma, J. Schreiber, LASER PARTICLE ACCELERATION: STATUS AND PERSPECTIVES FOR NUCLEAR PHYSICS, Acta Physica Polonica B, 2011, 42(3-4): 843-852.
  15. Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films, Energy & Environmental Science, 2011, 4(4): 1440-1446.
  16. W. Ma, V.K. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, B.M. Hegelich, H.J. Maier, J. Schreiber, D. Habs, Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration, Nucl Instrum Meth A, 2011, 655(1): 53-56.
  17. L. Liu, W. Ma, Z. Zhang, Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications, Small, 2011, 7(11): 1504-1520.
  18. J. Li, W. Ma, L. Song, Z. Niu, L. Cai, Q. Zeng, X. Zhang, H. Dong, D. Zhao, W. Zhou, S. Xie, Superfast-Response and Ultrahigh-Power-Density Electromechanical Actuators Based on Hierarchal Carbon Nanotube Electrodes and Chitosan, Nano Lett, 2011, 11(11): 4636-4641.
  19. J. Li, Y. Gao, W. Ma, L. Liu, Z. Zhang, Z. Niu, Y. Ren, X. Zhang, Q. Zeng, H. Dong, D. Zhao, L. Cai, W. Zhou, S. Xie, High performance, freestanding and superthin carbon nanotube/epoxy nanocomposite films, Nanoscale, 2011, 3(9): 3731-3736.
  20. D. Habs, P.G. Thirolf, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, W. Ma, J. Schreiber, Introducing the fission-fusion reaction process: using a laser-accelerated Th beam to produce neutron-rich nuclei towards the N = 126 waiting point of the r-process, Appl Phys B-Lasers O, 2011, 103(2): 471-484.
  21. H.Y. Wang, X.Q. Yan, Y.R. Lu, F.L. Zheng, Z.Y. Guo, W.J. Ma, X.T. He, T. Tajima, D. Habs, J.E. Chen, Autofocused, enhanced proton acceleration from a nanometer-scale bulged foil, Phys Plasmas, 2010, 17(11).
  22. P.G. Thirolf, D. Habs, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, W. Ma, J. Schreiber, Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration, in: 3rd International Conference on Frontiers in Nuclear Structure, Astrophysics and Reactions (FINUSTAR), Rhodes, GREECE, 2010, pp. 88-95.
  23. J. Shen, B. Ge, H. Dong, N. Zhang, S. Luo, W. Ma, X. Duan, S. Xie, W. Zhou, ZnS/Zn2SnO4 biaxial nanowire heterostructures, Physica E, 2010, 42(5): 1435-1440.
  24. Z. Niu, W. Zhou, W. Ma, H. Dong, J. Li, X. Zhang, Q. Zeng, S. Xie, Template Synthesis and Growth Mechanism of Metal Nanowire/Carbon Nanotube Heterojunctions, J Nanosci Nanotechno, 2010, 10(11): 7583-7586.
  25. W. Ma, B. Feng, Y. Ren, Q. Zeng, Z. Niu, J. Li, X. Zhang, H. Dong, W. Zhou, S. Xie, Large Third-Order Optical Nonlinearity in Directly Synthesized Single-Walled Carbon Nanotube Films, J Nanosci Nanotechno, 2010, 10(11): 7333-7335.
  26. Y. Gao, J. Li, L. Liu, W. Ma, W. Zhou, S. Xie, Z. Zhang, Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy, Advanced Functional Materials, 2010, 20(21): 3797-3803.
  27. Y. Gao, J. Li, L. Liu, W. Ma, W. Zhou, S. Xie, Z. Zhang, Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy, Advanced Functional Materials, 2010, 20(21): 3797-3803.
  28. W. Zhou, X. Bai, E. Wang, S. Xie, Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes, Adv Mater, 2009, 21(45): 4565-4583.
  29. Y. Zhao, W. Ma, L. Song, Z. Liu, G. Liu, Z. Zhang, Y. Yang, Y. Guo, D. Ma, S. Xie, L. Sun, Surface-Enhanced/Normal Raman Scattering Studies on an Isolated and Individual Single-Walled Carbon Nanotube, J Nanosci Nanotechno, 2009, 9(2): 1308-1311.
  30. X. Zhang, D. Liu, L. Zhang, W. Li, M. Gao, W. Ma, Y. Ren, Q. Zeng, Z. Niu, W. Zhou, S. Xie, Synthesis of large-scale periodic ZnO nanorod arrays and its blue-shift of UV luminescence, J Mater Chem, 2009, 19(7): 962-969.
  31. Y. Ren, L. Song, W. Ma, Y. Zhao, L. Sun, C. Gu, W. Zhou, S. Xie, Additional curvature-induced Raman splitting in carbon nanotube ring structures, Phys Rev B, 2009, 80(11).
  32. W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu, J. Li, H. Dong, W. Zhou, P.M. Ajayan, S. Xie, High-Strength Composite Fibers: Realizing True Potential of Carbon Nanotubes in Polymer Matrix through Continuous Reticulate Architecture and Molecular Level Couplings, Nano Lett, 2009, 9(8): 2855-2861.
  33. W. Ma, L. Liu, R. Yang, T. Zhang, Z. Zhang, L. Song, Y. Ren, J. Shen, Z. Niu, W. Zhou, S. Xie, Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers, Adv Mater, 2009, 21(5): 603-+.
  34. G. Liu, Y. Zhao, K. Zheng, Z. Liu, W. Ma, Y. Ren, S. Xie, L. Sun, Coulomb Explosion: A Novel Approach to Separate Single-Walled Carbon Nanotubes from Their Bundle, Nano Lett, 2009, 9(1): 239-244.
  35. L. Song, W. Ma, Y. Ren, W. Zhou, S. Xie, P. Tan, L. Sun, Temperature dependence of Raman spectra in single-walled carbon nanotube rings, Appl Phys Lett, 2008, 92(12).
  36. L. Liu, W. Zhou, S. Xie, L. Song, S. Luo, D. Liu, J. Shen, Z. Zhang, Y. Xiang, W. Ma, Y. Ren, C. Wang, G. Wang, Highly efficient direct electrodeposition of Co-Cu alloy nanotubes in an anodic alumina template, J Phys Chem C, 2008, 112(7): 2256-2261.
  37. G. Liu, Y. Zhao, K. Deng, Z. Liu, W. Chu, J. Chen, Y. Yang, K. Zheng, H. Huang, W. Ma, L. Song, H. Yang, C. Gu, G. Rao, C. Wang, S. Xie, L. Sun, Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies, Nano Lett, 2008, 8(4): 1071-1075.
  38. Z. Zhang, Y. Liu, D. Liu, S. Luo, J. Shen, L. Liu, W. Ma, Y. Ren, Y. Xiang, W. Zhou, S. Xie, K. Zheng, Y. Zhao, L. Sun, C. Zou, D. Yu, Secondary growth of small ZnO tripodlike arms on the end of nanowires, Appl Phys Lett, 2007, 91(1).
  39. W. Ma, L. Song, R. Yang, T. Zhang, Y. Zhao, L. Sun, Y. Ren, D. Liu, L. Liu, J. Shen, Z. Zhang, Y. Xiang, W. Zhou, S. Xie, Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films, Nano Lett, 2007, 7(8): 2307-2311.
  40. S. Luo, W. Zhou, W. Chu, J. Shen, Z. Zhang, L. Liu, D. Liu, Y. Xiang, W. Ma, S. Xie, Batchwise growth of silica cone patterns via self-assembly of aligned nanowires, Small, 2007, 3(3): 444-450.
  41. G. Liu, Z. Liu, Y. Zhao, K. Zheng, H. Huang, W. Ma, C. Gu, L. Sun, S. Xie, Large photocurrent generated by a camera flash in single-walled carbon nanotubes, J Phys D Appl Phys, 2007, 40(22): 6898-6901.
  42. D.F. Liu, Y.J. Xiang, Q. Liao, J.P. Zhang, X.C. Wu, Z.X. Zhang, L.F. Liu, W.J. Ma, J. Shen, W.Y. Zhou, S.S. Xie, A simple route to scalable fabrication of perfectly ordered ZnO nanorod arrays, Nanotechnology, 2007, 18(40).
  43. L. Song, L. Ci, L. Sun, C. Jin, L. Liu, W. Ma, D. Liu, X. Zhao, S. Luo, Z. Zhang, Y. Xiang, J. Zhou, W. Zhou, Y. Ding, Z. Wang, S. Xie, Large-scale synthesis of rings of bundled single-walled carbon nanotubes by floating chemical vapor deposition, Adv Mater, 2006, 18(14): 1817-+.
  44. L. Song, L. Ci, C. Jin, P. Tan, L. Sun, W. Ma, L. Liu, D. Liu, Z. Zhang, Y. Xiang, S. Luo, X. Zhao, J. Shen, J. Zhou, W. Zhou, S. Xie, Efficiently producing single-walled carbon nanotube rings and investigation of their field emission properties, Nanotechnology, 2006, 17(9): 2355-2361.

相關詞條

熱門詞條

聯絡我們