馬宗青

馬宗青

馬宗青,博士,天津大學材料科學與工程學院先進金屬材料研究所研究員。

基本介紹

  • 中文名:馬宗青
  • 畢業院校:天津大學材料學院
  • 學位/學歷:博士
  • 職業:教師
  • 專業方向:粉末冶金、活化燒結、高溫合金、超導材料
  • 任職院校:天津大學材料科學與工程學院先進金屬材料研究所
教育經歷,工作經歷,主講課程,學術成果,承擔項目,出版著作,發表論文,專利成果,榮譽獎項,

教育經歷

2002.9–2006.7,天津大學材料學院,金屬材料系,工學學士
2006.9–2011.6,天津大學材料學院,金屬材料系,工學博士

工作經歷

2017.7-至今,天津大學材料科學與工程學院,特聘研究員
2014.07-2017.6,天津大學材料科學與工程學院,副教授
2011.09-2014.06,天津大學材料科學與工程學院,講師
2013.10-2017.02,澳大利亞Wollongong大學,DECRA項目合作研究
2009.07-2010.10,德國Max Planck金屬研究所,項目合作研究

主講課程

材料失效分析與壽命預測
材料物理性能

學術成果

承擔項目

序號
項目類型和編號
項目名稱
研究起止年月
主持
/參加
項目狀態
1
國家優秀青年科學基金項目(No.51822404)
金屬活化低溫燒結
2019.1-
2021.12
主持
在研
2
國家自然科學基金面上項目(No.51574178)
面向電漿Y2O3彌散強化鎢基材料複合先驅粉原位製備及其燒結特性
2016.1-
2019.12
主持
在研
3
國家自然科學基金青年項目(No.51302186)
鐵基超導材料原位燒結織構形成機制及其載流能力研究
2014.1-
2016.12
主持
完成
4
ARC-Discovery Early Career Researcher Award(No. DE 140101333)
Microstructure design of second generation MgB2superconducting wires for enhancement of critical current
density
2014.4-
2017.3
主持
完成
5
天津市自然科學基金一般項目
(No.18JCYBJC17900)
氧化物彌散強化鎢基合金燒結成相機制及組
織調控
2018.4-2021.3
主持
在研
6
天津市自然科學基金青年項目(No. 14JCQNJC03300)
鐵基超導材料燒結織構形成技術及其載流性能最佳化
2014.4-
2017.3
主持
完成
7
教育部博士點基金
(No.20120032120016)
鐵基超導體燒結成相過程及動力學機制研究
2013.1-
2015.12
主持
完成

出版著作

[1] 劉永長,馬宗青. MgB2超導體的成相與摻雜機理.北京,科學出版社,2009年2月,ISBN: 978-7-03-023188-8。(註:劉永長為申請人博士生導師)
[2] Ma ZQ, Liu YC, Chapter 21: Sintering Process and its Mechanism of MgB2 superconductors in Sintering of Ceramics - New Emerging Techniques, ISBN: 978-953-51-0017-1, InTech - Open Access Publisher, Croatia, 2012/2
[3] Cai Q, Liu YC, Ma ZQ, Chapter 11: Glycine–doped MgB2 superconductors: fabrication, characterization, and properties in Superconductivity: application today and tomorrow. ISBN: 978-1-63483-816-0, Nova Science Publishers, Inc. New York, USA, 2015/11.

發表論文

[1] Ma QS, Peng JM, Ma ZQ*, Cheng F, Lan F, Li C, Yang ZW, Liu CX, Liu YC, Improved grain connectivity and critical current density in ex-situ MgB2 superconductors prepared by two-step sintering, Mater. Chem. Phys. 204 (2018) 62-66
[2] Qiu WB, Ma ZQ*, Patel D, Sang LN, Cai CB, Shahriar Al Hossain M, Cheng ZX, Wang XL, Dou SX, The Interface Structure of FeSe Thin Film on CaF2Substrateand its Influence on the Superconducting Performance. ACS Appl. Mater. Interfaces 9 (2017) 37446- 37453.
[3] Cheng F, Liu YC, Ma ZQ*, Shahriar Al Hossain M, Somer M, The isotope effect of boron on the carbon doping and critical current density of Mg11B2 superconductors. J. Mater. Chem C 5 (2017) 663-668
[4] Jie H, Qiu WB, Billah M, Mustapic M, Patel D, Ma ZQ*, Gajda D, Morawski A, Cetner T, Shahabuddin M, Yanmaz E, Rindfleisch M, Kim J, Hossain Md Shahriar A*, Superior transport J(c) obtained in in-situ MgB2 wires by tailoring the starting materials and using a combined cold high pressure densification and hot isostatic pressure treatment. Scripta Mater. 12 (2017) 79-83
[5] Dong Z, Liu N, Ma ZQ*, Liu CX, Guo QY, Alothman Zeid Abdullah, Yamauchi Y, Shahriar A Hossain Md, Liu YC, Microstructure Refinement in W-Y2O3 Alloy Fabricated by Wet Chemical Method with Surfactant Addition and Subsequent Spark Plasma Sintering. Scientific Reports 7 (2017) 6051
[6] Cheng F, Ma ZQ*, Liu CX, Li HJ*, Shahriar A Hossain M, Bando Y, Yamauchi Y, Fatehmulla A, Farooq A, Liu YC. Enhancement of grain connectivity and critical current density in the ex-situ sintered MgB2 superconductors by doping minor Cu. J. Alloys Compd. 727 (2017) 1105-1109.
[7] Dong Z, Liu N, Ma ZQ*, Liu CX, Guo QY, Liu YC, Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering. J. Alloys Compd. 695 (2017) 2969-2973
[8] Liu YC, Cheng F, Cai Q, Qiu WB, Lu Y, Ma ZQ*, The kinetics mechanism of MgB2 layer formation within MgB2 superconducting wire fabricated using improved internal Mg diffusion process. J. Alloys Compd. 697 (2017) 37-42.
[9] Peng JM, Cai Q, Cheng F, Ma ZQ*, Li C, Xin Y, Liu YC, Enhancement of critical current density by a “MgB2-MgB4” reversible reaction in self-sintered ex-situ MgB2 bulks. J. Alloys Compd. 694 (2017) 24-29
[10] Dong Z., Liu N., Ma ZQ*, Liu CX, Guo QY, Yamauchi Y, Alamri HR, Alothman ZA, Shahriar A. Hossain ., Liu YC. Synthesis of nanosized composite powders via a wet chemical process for sintering high performance W-Y2O3 alloy. Int. J. Refract. Met. H. 69 (2017) 266-272
[11] Qiu WB, Ma ZQ*, Liu YC, Shahriar Al Hossain M, Wang XL, Cai CB, Dou SX, Tuning superconductivity in FeSe thin films via Magnesium doping. ACS Appl. Mater. Interfaces 8 (2016) 7891-7896
[12] Liu YC, Cheng F, Qiu WB, Ma ZQ*, Shahriar Al Hossain M, Dou SX, High performance MgB2 superconducting wires fabricated by improved internal Mg diffusion process at low temperature. J. Mater. Chem C 4 (2016) 9469-9475
[13] Cheng F, Liu YC, Ma ZQ*, Shahriar Al Hossain M, Somer M, Improved Superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering. Scientific Reports 6 (2016) 25498
[14] Qiu WB, Jie H, Dipak P, Lu Y, Vladimir L, Arnaud D, Somer M, Shahabuddin M, Kim JH, Ma ZQ*, Dou SX, Hossain Md Shahriar M*, Improvement in the transport critical current density and microstructure of isotopic Mg11B2 monofilament wires by optimizing the sintering temperature. Scientific Reports 6 (2016) 36660
[15] Chen N, Liu YC, Ma ZQ*, Yu LM, Li HJ, Improvement in structure and superconductivity of bulk FeSe0.5Te0.5 superconductors by optimizing sintering temperature. Scripta Mater. 112 (2016) 152-155
[16] Chen N,Liu YC,Ma ZQ*, Li HJ, Significant enhancement of superconducting properties in the FeSe0.5Te0.5 bulks by minor Sn addition. Mater. Lett. 175 (2016) 16-19
[17] Cheng F, Liu YC, Ma ZQ*, Shahriar Al Hossain M, Somer M, Sintering process and critical current density of low activation Mg11B2 superconductors from low temperature to high temperature. Physica C 527 (2016) 9-13
[18] Peng JM, Liu YC, Ma ZQ*, Shahriar Al Hossain M, Xin Y, Jin JX, Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition. Physica C 528 (2016) 60-64.
[19] Cai Q, Liu YC, Guo QY, Ma ZQ, Li HJ, Second-phase segregation and micro strain/lattice parameter dependent transition temperature in polycrystalline MgB2 Supercond. Sci. Technol. 29 (2016) 105013
[20] Cai Q, Liu YC, Guo QY, Ma ZQ, Li HJ, Variation of MgB2 growth mode and enhancement of critical current density by instantaneously 800 degrees C-triggered low-temperature sintering. Scripta Mater. 124 (2016) 184-188
[21] Cai Q, Ma ZQ, Liu YC, Guo QY, Xiong J, Li HJ, Qin FM, Evaluation of quenching-induced lattice strain and superconducting properties in un-doped and glycine-doped MgB2 bulks. J Mater Sci: Mater in Electro.27 (2016) 9431-9436
[22] Cai Q, Guo QY, Liu YC, Ma ZQ, Li HJ, Thermodynamic and kinetic evidence for MgO formation and pinning behavior in glycine-doped MgB2 bulks. J. Mater. Sci. 51 (2016) 2665-2676
[23] Mei, YP, Liu CX, Liu, YC, Zhou XS, Yu LM, Li C, Ma ZQ, Huang Y, Effects of cold rolling on the precipitation and the morphology of delta-phase in Inconel 718 alloy, J. Mater. Res. 31 (2016) 443-454.
[24] Barua S, Shahriar Al Hossain M, Ma ZQ*, D. Patel, M. Mustapic, M. Somer, "Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder," Scripta Mater. 104 (2015) 37-40.
[25] Chen N, Liu YC, Ma ZQ*, Li HJ, M. Shahriar Al Hossain, Enhancement of superconductivity in the sintered FeSe0.5Te0.5 bulks with proper amount of Sn addition. J. Alloys Compd. 633 (2015) 233-236
[26] Liu YC, Lan F, Ma ZQ*, Chen N, Li HJ, Barua S, Patel D, Shahriar Al Hossain M, Acar S, Kim JH, Dou SX, Significantly enhanced critical current density in nano MgB2 grains formed at low temperature with homogeneous carbon doping. Supercond. Sci. Technol. 28 (2015) 055005
[27] Cheng F, Liu YC, Ma ZQ*, Li HJ, M. Shahriar Al Hossain, Superior critical current density obtained in Mg11B2 low activation superconductor by using reactive amorphous 11B and optimizing sintering temperature. J. Alloys Compd. 650 (2015) 508-513
[28] Wang H, Gao ZM, Liu YC, Li C, Ma ZQ, Yu LM, Evaluation of cooling rate on electrochemical behavior of Sn-0.3Ag-0.9Zn solder alloy in 3.5 wt% NaCl solution. J Mater Sci: Mater in Electro.26 (2015)11-22
[29] Lan F, Ma ZQ*, Liu YC, Chen N, Cai Q, Li HJ, Barua S, Patel D, Shahriar Al Hossain M, Kim JH, Dou SX, The formation of nano-layered grains and their enhanced superconducting transition temperature in Mg-doped FeSe0.9 bulks. Scientific Reports 4 (2014) 6481
[30] Chen N,Ma ZQ*, Liu YC, Li XT, Cai Q, Li HJ, Yu LM, Influence of Sn doping on the phase formation and superconductivity of FeSe0.93. J. Alloys Compd.588 (2014) 418-421
[31] Ma ZQ, Liu YC , Cai Q, Yu LM, Significant improvement in the critical current density of MgB2 bulks in situ sintered at low temperature by excess Mg addition Physica C 496 (2014) 49–52
[32] Ma ZQ, Dong ML, Liu YC, The sintering process and reaction kinetics of Fe-Se system after ball milling treatment. J. Supercond. Nov. Magn. 27 (2014) 775–780.
[33] Xiong J, Cai Q, Ma ZQ*, Yu LM, Liu YC*, Enhancement of Critical Current Density in MgB2 Bulk with CNT-coated Al Addition. J. Supercond. Nov. Magn. 27 (2014) 1659-1664.
[34] Cai Q, Liu YC, Ma ZQ, Yu LM, Xiong J, Li HJ. Pinning behavior of glycine-doped MgB2 bulks with excellent critical current density by Cu-activated low-temperature sintering. J. Alloys Compd. 585 (2014) 78-84.
[35] Cai Q, Liu YC, Ma ZQ, Yu LM. Effects of MgO evolution on the critical current density in bulk MgB2 containing histidine. Physica C 496 (2014) 53-57.
[36] Cai Q, Liu YC, Ma ZQ, Yu LM. Comparison of carbon-doped MgB2 bulks fabricated from pre-synthesized Mg/CNT and Mg/amorphous carbon composites. Appl Phys A-Mater Sci Process. 114 (2014) 919-924.
[37] Ma ZQ, Liu YC, Cai Q, Jiang H, Yu LM, Excellent Jc in the low-temperature sintered MgB2 superconductors consisted of uncompleted MgB2 phase and residual Mg. Mater. Chem. Phys. 141 (2013) 378-382.
[38] Jiang H, Ma ZQ*, Liu YC,Dong ZZ, Yu LM, Cai Q, Wang R, The effect of ball-milling treatment of original powders on the sintering process and critical current density of graphite-doped MgB2 bulks., J. Mater. Sci. 48 (2013) 2485-2489.
[39] Cai Q, Liu YC, Ma ZQ, Li HJ, Yu LM, Variation of pinning mechanism and enhancement of critical current density in MgB2 bulk containing self-generated coherent MgB4 impurity. Appl. Phys. Lett 103 (2013) 132601.
[40] Dai L, Liu YC, Ma ZQ, Dong ZZ, Yu LM, Microstructural evolution of oxide-dispersion-strengthened Fe-Cr model steels during mechanical milling and subsequent hot pressing. J. Mater. Sci. 48 (2013) 1826-1836.
[41] Li XT, Gao ZM, Liu YC, Ma ZQ, Yu LM, Li HJ, Yang HZ, The microstructures and superconducting properties of FeSe0.5Te0.5 bulks with original milled powders. Cryogenics, 57 (2013) 50-54.
[42] Li XT, Liu YC, Ma ZQ, Gao ZM, Characterization of low-temperature synthesized FeCr0.05Se superconductors, Cryogenics,55 (2013) 68-72.
[43] Cai Q, Liu YC, Ma ZQ, Yu LM, Superconducting properties and growth mechanism of novel layered structure in MgB2 bulks with Cu/Y2O3 co-doping, J Mater Sci: Mater in Electro., 24 (2013) 1451-1457 .
[44] Cai Q, Liu YC, Ma ZQ, Cardwell DA. Fishtail effects and improved critical current density in polycrystalline bulk MgB2 containing carbon nanotubes. Physica C. 492 (2013) 6-10.
[45] Li XT, Ma ZQ, Liu YC, Dong ML, Yu LM, The sintering process and superconductivity of polycrystalline milled Fe-Se, IEEE Trans. Appl. Supercon., 23 (2013) 7000405.
[46] Ma ZQ, Liu YC, Cai Q, The synthesis of lamellar nano MgB2 grains with nanoimpurities flux pinning centers and their significantly improved critical current density, Nanoscale 4 (2012) 2060-2065.
[47] Ma ZQ, Liu YC, Cai Q, Yu LM, Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample, Nanoscale. Res. Lett. 7 (2012) 390.
[48] Jiang H, Dong ZZ, Liu YC,Ma.ZQ*, Yu LM, Cai Q, Phase formation and superconductive properties of Cu doped MgB2 sintered with milled B powder, Physica C 480 (2012) 67–70.
[49] Ma ZQ, Liu YC, Cai Q, The effect of Cu addition on the phase formation and critical current density in the sugar doped MgB2 superconductor, J. Supercond. Nov. Magn. 25 (2012) 1683–1688.
[50] Cai Q, Liu YC, Ma ZQ, Yu LM, Significant enhancement of critical current density in Gly-doped MgB2 bulk by tailoring the formation of MgO, Scripta Mater. 67 (2012) 92-95.
[51] Cai Q, Ma ZQ, Liu YC, Yu LM, Enhancement of critical current density in glycine-doped MgB2 bulks, Materials Chemistry and Physics, 136 (2012) 778-782
[52] Cai Q, Ma ZQ, Liu YC, Zhao Q, Gao ZM, Effects of ball milling on the sintering process and superconducting properties of (MgB2)0.96Ni0.04 Bulks, IEEE Trans. Appl. Supercon.22 (2012) 6800405.
[53] Li XT, Gao ZM, Liu YC, Ma ZQ, Yu LM, Influence of Pre-milling Time on The Sintering Process and Superconductive Properties of FeSe, IEEE Trans. Appl. Supercon. 22 (2012) 730015.
[54] Cai Q, Liu YC, Ma ZQ, Dong ZZ, Superconducting properties of Y2O3/SiC Co-doped bulk MgB2, J. Supercond. Nov. Magn. 25 (2012) 357-361.
[55] Ma ZQ, Liu YC, Low temperature synthesis of MgB2supercondutors, Inter. Mater. Rev.56 (2011) 267-286.
[56] Ma ZQ,Liu YC, The varied kinetics mechanisms in the synthesis of MgB2 from elemental powders by low-temperature sintering, Mater. Chem. Phys. 126 (2011) 114–117.
[57] Zhao Q, Liu YC, Zhao NQ, Penner S, Ma ZQ, A novel approach for efficient Ni nanoparticle doping of MgB2 by liquid-assisted sintering, IEEE Trans. Nanotechnol. 10 (2011) 331-337.
[58] Cai Q, Ma ZQ, Zhao Q, Liu YC, Observation of Flux Jump in Bulk (MgB2)0.96Ni0.04 Doped with Milled Ni powders, J. Supercond. Nov. Magn. 24 (2011) 2013-2017.
[59] Ma ZQ, Liu YC, Gao ZM, The synthesis and grain connectivity of lamellar MgB2 grains by Cu-activated sintering at low temperature, Scripta Mater.63 (2010) 399-402.
[60] Ma ZQ, Jiang H, Liu YC, The accelerated low-temperature sintering of MgB2 bulks with high critical density by minor Sn-doping, Supercond. Sci. Technol. 23 (2010) 025005.
[61] Ma ZQ, Liu YC, Hu WP, Gao ZM, Yu LM, Dong ZZ, The enhancement of Jc in the nanoSiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature, Scripta Mater. 61 (2009) 836-839.
[62] Ma ZQ, Liu YC, Huo J,Gao ZM, MgB2 superconductors with abnormally- improved Jc sintered after autoxidation of milled original powders, J. Appl. Phys.106 (2009) 113911.
[63] Ma ZQ, Liu YC, Zhao Q, Dong ZZ, Yu LM, Mechanism analysis for enhanced electromagnetic properties in nano-SiC-doped MgB2 based on the discussion of the sintering process, Supercond. Sci. Technol. 22 (2009) 085015.
[64] Ma ZQ, Liu YC, Huo J, Influence of ball-milled amorphous B powders on the sintering process and superconductive properties of MgB2, Supercond. Sci. Technol. 22 (2009) 125006.
[65] Ma ZQ, Liu YC, Dong ZZ, Yu LM, Gao ZM, Zhao Q, The effect of Cu addition on the sintering process and superconductive properties of SiC-doped MgB2 bulks, Appl. Phys. A96 (2009) 975-978.
[66] Ma ZQ, Liu YC, Shi QZ, Zhao Q, Gao ZM, The mechanism of accelerated phase formation of MgB2 by Cu-doping during low-temperature sintering, Mater. Res. Bull. 44 (2009) 531-537.
[67] Ma ZQ, Liu YC, Shi QZ, Zhao Q, Gao ZM, Effect of Cu addition in reduction of MgO content for the synthesis of MgB2 through sintering, J. Alloys Compd. 471 (2009) 105-108.
[68] Zhao Q, Liu YC, Han YJ, Ma ZQ, Shi QZ, Gao ZM, Effect of heating rates on microstructure and superconducting properties of pure MgB2, Physica C 469 (2009) 857-861.
[69] Zhao Q, Liu YC, Shi QZ, Ma ZQ, Gao ZM. Characteristic and synthesis mechanism of MgB2 nanoparticles in solid-state reactive sintering, J Alloy Compd 470 (2009) 443-447.
[70] Ma ZQ, Liu YC, Han YJ, Zhao Q, Gao ZM, Variation of the enhancement mechanism in the critical current density of Cu-doped MgB2 samples sintered at different temperatures, J. Appl. Phys.104 (2008) 063917.
[71] Ma ZQ, Liu YC, Shi QZ, Zhao Q, Gao ZM, The accelerated formation of MgB2 bulks with high critical current density by low-temperature Cu-doping sintering, Supercond. Sci. Technol. 21 (2008) 065004.
[72] Ma ZQ, Liu YC, Yu LM, Zhao Q, The accelerated formation of MgB2 phase with high critical current density by Cu and SiC multi-doping during the low-temperature sintering process, J. Appl. Phys. 104 (2008) 113917.
[73] Ma ZQ, Liu YC, Shi QZ, Zhao Q, Gao ZM, The improved superconductive properties of MgB2 bulks with minor Cu addition through reducing the MgO impurity, Physica C 468 (2008) 2250–2253.
[74] Shi QZ, Liu YC, Gao ZM, Zhao Q, Ma ZQ. In-situ formation process and mechanism of bulk MgB2 before Mg melting, J. Mater. Res. 23 (2008) 1840- 1848.
[75] Shi QZ, Liu YC, Zhao Q, Ma ZQ. Phase formation process of bulk MgB2 analyzed by Differential Thermal Analysis during sintering, J. Alloys Compd. 458 (2008) 553-557.
[76] Zhao Q, Liu YC, Shi QZ, Ma ZQ, Gao ZM. Characteristic and Synthesis Mechanism of MgB2 Nanoparticles in Solid-State Reactive Sintering, J. Alloys Compd. 470 (2008) 443-447
[77] Liu YC, Shi QZ, Zhao Q, Ma ZQ, Kinetics analysis for the sintering of bulk MgB2 superconductor, J Mater Sci: Mater in Electro. 18 (2007) 855-861.

專利成果

[1]馬宗青,董智,柳楠,劉永長,劉晨曦,余黎明,超細氧化釔摻雜鎢複合前驅體粉末的製備方法。授權號:ZL201610964879.0
[2]馬宗青,彭俊明,程芳,劉永長,蔡奇,Cu包覆Mg棒中心擴散法低溫製備二硼化鎂超導線材的方法(ZL201610079382.0)
[3]馬宗青,陳寧,劉永長,蔡奇,Sn添加FeSe1/2Te1/2的超導體提高超導性能的方法(授權號:ZL201410625687.8)
[4]馬宗青,劉永長,陳寧,蔡奇,一種添加Mg提高FeSe超導轉變溫度的方法(授權號:ZL201310288873.2)
[5]劉永長,馬宗青,霍潔,高志明,余黎明,通過球磨粉末氧化控制並燒結高載流MgB2超導體的方法(授權號:ZL200910069804.6)
[6]高志明,孫芳芳,馬宗青,高強度鋁合金二次拉伸成型中表面橘皮效應的控制方法(授權號:ZL201310693788.4)
[7]劉永長,張旦天,馬宗青,余黎明,高志明,15NiCuMoNb5鋼正火過程中溫島狀組織的消除方法(授權號:ZL201310211801.8)
[8]劉永長,張旦天,馬宗青,余黎明,高志明,WB36鋼管矯直過程馬氏體/奧氏體組織控制方法(授權號:ZL201310210910.8)
[9]劉永長,余黎明,李沖,馬宗青,王東坡,一種防止核電用20控Cr鋼石墨組織出現的強磁場精煉方法(授權號:ZL201410534893.8)
[10]劉永長,蔡奇,馬宗青,余黎明,高志明,高臨界電流密度甘氨酸摻雜MgB2超導體及製備方法(授權號:ZL201110429542.7)
[11]劉永長,董茂林,李小婷,馬宗青,余黎明,提高FeSe超導材料燒結效率的方法(授權號:ZL201110357423.5)
[12]劉永長,姜海,馬宗青,董治中,余黎明,金屬Sn摻雜MgB2超導體及高溫快速製備方法(授權號:ZL200910069439.9)
[13]劉永長,徐榮雷,韋晨,馬宗青,趙倩,王文忠,二硼化鎂顆粒增強型錫銀鋅複合焊料及其製備方法(授權號:ZL200810107128.2)
[14]劉永長,韋晨,余黎明,徐榮雷,馬宗青,趙倩,錫銀鋅系無鉛焊料的製備方法(授權號:ZL200810054271.X)
[15]劉永長,史慶志,馬宗青,納米MgO晶須的低溫製備方法(授權號:ZL 200710061300.0)
[16]劉永長,趙倩,史慶志,馬宗青,超導MgB2納米顆粒的低溫快速粉末燒結方法(授權號:ZL200710150917.X)
[17]劉永長,趙倩,趙乃勤,康建立,馬宗青,史慶志,原位製備碳包覆鎳顆粒摻雜MgB2超導材料的方法(ZL200710151035.5)
[18]劉永長,史慶志,馬宗青,趙倩,深過冷快速凝固法製備MgB2超導材料(授權號:ZL 200610130483.2)

榮譽獎項

2017,天津大學“北洋青年學者”
2016,中國材料研究學會科學技術獎二等獎(第2完成人)
2014,澳大利亞Discovery Early Career Researcher Award
DECRA,“澳大利亞優秀青年獎”,
2013,天津市優秀博士學位論文
2011,天津大學“十佳傑出青年”
2009,寶鋼優秀學生特等獎

相關詞條

熱門詞條

聯絡我們