雙重壁熱交換器

雙重壁熱交換器,即泰勒-烏拉姆構型(英語:Teller–Ulam design,縮寫:T-U design),是當前世界上絕大部分核聚變武器所使用的核武器設計概念。由於這個構型使用氫同位素聚變反應來產生中子,它被認為是“氫彈的秘密”。然而,在絕大多數套用中,它的毀滅性的能量都是來自於核裂變,而不是核聚變

基本介紹

  • 中文名:雙重壁熱交換器
  • 外文名:Teller–Ulam design
簡介,基本原理,總結,設計變種,

簡介

雙重壁熱交換器,即泰勒-烏拉姆構型(英語:Teller–Ulam design,縮寫:T-U design),是當前世界上絕大部分核聚變武器所使用的核武器設計概念。由於這個構型使用氫同位素聚變反應來產生中子,它被認為是“氫彈的秘密”。然而,在絕大多數套用中,它的毀滅性的能量都是來自於核裂變,而不是核聚變
在接近三十年的時間裡,這個構型的基本特徵都作為國家機密秘而不宣。它的特徵包括
  1. 將核彈的爆炸分成兩個階段,一個是用於引發次級核爆的初級核爆,另一個就是威力更大的次級核爆。
  2. 通過初級核彈中核裂變產生的X-射線對次級核彈進行壓縮,這個過程被稱為對次級核彈的輻射內爆。
  3. 在冷壓縮以後,通過次級核彈內部的裂變爆炸對次級核彈進行加熱。
在環繞次級核彈的灼熱的輻射通道與相對溫度較低的次級核彈內部之間存在著溫度差,輻射內爆正是利用這個溫度差而形成的熱機來傳遞能量。推送層的質量很大,它可以作為隔溫層來保持這個溫度差。推送層也是內爆的反射層,可以增加和延長對次級核彈的壓縮。由於一般反射層使用鈾-238作為製造材料,這種材料在俘獲了聚變產生的中子以後會發生裂變,從而釋放出更大的能量。在大多數採用了泰勒-烏拉姆設計的核彈中,推送層裂變是爆炸的主要能量來源。在推送層裂變的過程中還會產生了大量的放射性產物,形成放射性塵埃
1952年,美國在常春藤麥克核試驗中對本設計的基本原理進行了測試。常春藤麥克試驗中引爆的裝置是一個專門製造的三層建築,其中充滿了液態。由於缺乏可移動性,它基本上無法被稱為是炸彈。蘇聯於1953年8月12日引爆了世界上第一枚實用的氫彈,它的名字是RDS-6sSloika,美國人給它的代號是Joe 4。它所使用的原理與常春藤麥克裝置有些區別。在蘇聯,泰勒-烏拉姆構型被稱為安德烈·薩哈羅夫第三方法,在1955年使用核彈RDS-6tTruba對設計進行了驗證。類似的設備也在英國、法國設計出來,但是實驗代號不為人所知。
它以兩個主要的貢獻者命名:愛德華·泰勒和斯坦尼斯拉夫·烏拉姆。他們在1951年為美國提出了這個構型。最初,這個方案被用於數百萬噸當量的熱核武器,但是由於它也非常適用於小型核武器,現在美、英、俄基本都使用泰勒-烏拉姆構型。泰勒-烏拉姆構型是世界上唯二兩種二階段熱核武器設計方案,而另一種則是由中國研製採用的于敏構型,後者僅用於中國的核計畫。

基本原理

泰勒-烏拉姆設計的基本思想是熱核武器中的不同部分可以分級依次引爆,每一級爆炸所產生的能量可以用於點燃下一級。既意味著初級需要包含一個裂變核彈(作為觸發級),而次級包含聚變的核燃料。由於這種分級設計,曾經有人根據次級核彈的原理,認為也可以向核彈中添加一個第三級,其中仍然加有聚變燃料。由初級核彈釋放的能量通過輻射內爆的方式傳遞給次級核彈,使其被加熱壓縮,最終引發核聚變
包圍著其他各個部件的部分被稱為環空腔,或輻射盒,它可以將初級核彈產生的能量暫時存處於其中。輻射盒的外部通常就是炸彈的的外殼,是任何熱核炸彈配置的唯一能夠公開提供的可視證據。大量關於不同核武器外殼的圖片被解密。
初級核彈被認為是一種標準的內爆式裂變彈,但是也很有可能是一種鈽核心的聚變增強裂變彈,其中添加了少量的聚變燃料(50:50的混合氣體)以提高裂變的效率。聚變燃料在被加熱和壓縮以後發生聚變可以提供額外的高能中子,引發更多的鏈式反應。一般來說,能夠創造熱核武器的研究計畫都是建立在已經能夠生產聚變增強裂變彈的技術基礎上的。這些核彈的彈芯一般由鈽-239或者鈾-235製成球形,外部的傳統高爆炸藥排成特殊的形狀稱為爆炸透鏡。當引爆時,這些爆炸透鏡會將球形彈芯壓縮成更小的球體,達到臨界質量引發鏈式反應,發生核爆炸。這是傳統意義上的核子彈的工作原理。
次級核彈通常是一個柱形的聚變燃料以及層層封裝的其它部件。柱形聚變燃料周圍首先是一層推送-反射層,由一層很重的鈾-238或者鉛製成。這層材料可以幫助壓縮聚變燃料。如果推送-反射層使用了鈾-238,該材料還可以在聚變產生的快中子作用下發生裂變,釋放出更多的能力。聚變燃料內部通常是某種形式的氘化鋰,這種物質與液態氘氚混合物相比,使熱核武器更實用化。在第一枚氫彈裝置常春藤麥克核試驗中,引爆的裝置包含了複雜的低溫結構以儲存液態的氘和氚)。氘化鋰在使用中子引爆時會產生氚,這是一種氫的更重的同位素,相對來說在與氘混合的情況下更容易與氘發生核聚變。(參見核聚變中關於聚變反應的更細節的技術討論)。在聚變燃料中間插入一根被稱為火花塞的由可裂變物質(鈽-239或鈾-235)製成的中空柱體。該柱體的特殊形狀使得當它被壓縮時,自身會達到臨界質量,產生核裂變。如果使用了第三級核彈,它將會放置在次級核彈的下部,很有可能使用相同的材料製成。
將初級核彈和次級核彈分開的部件被稱為級間結構。初級核彈的裂變可能會產生三種能量,1)高爆炸藥內爆初級核彈時產生的膨脹的熱空氣,2)電磁輻射,以及3)初級核彈爆炸時產生的中子。級間結構負責精確調節從初級核彈傳向次級核彈的能量。它需要在適當地時間將熱空氣、電子輻射以及中子傳遞到適當的位置。如果級間結構的設計不能達到最優,很可能無法保證次級核彈每次都被成功引爆,這種情況被稱為裂變失敗城堡行動系列核試驗中的Koon核試驗就是一個很好的例子。該實驗的一個很小的瑕疵導致初級核彈產生的中子流過早的加熱次級核彈,從而沒有充分壓縮,導致沒有產生任何聚變。
在公開文獻中,很少有關於級間結構的詳細信息。最好的資料來源是一張來自英國熱核武器的簡化示意圖。這張圖與美國W76核彈頭很像。這張圖出現在綠色和平組織的一份題目為雙重使用核技術的報告中。圖中顯示了主要的部件和排列方式,但是絕大部分細節都省略掉了;而圖中所提供的細節也很可能被省略和不準確的成分。圖中被標記為中子聚焦透鏡和頂蓋反射器包裝;前一個用來引導中子流向鈾-235和鈽-239製成的火花塞,而後一部分指的是一個X射線反射鏡。這個反射鏡一般是一個由對X-射線不透明的物質(如鈾)製成的圓柱體,兩端分別是初級核彈與次級核彈。它不會像鏡子那樣反射,相反,它會在初級核彈產生的X射線作用下被加熱到非常高的溫度,隨後,它的熱輻射會產生更為平均分布的X射線。這些X射線將被引導至次級核彈,引發輻射內爆。隨後被標記的是反射器/中子槍架。反射器將中心的中子輻射透鏡和挨著外層初級核彈的封裝間的空隙封閉起來。它將初級核彈與次級核彈分離開來,功能也和前面描述的反射器一致。核彈中還有大約六個中子槍(參見桑迪亞國家實驗室提供的資料[1]),每一個中子槍都有一端穿過反射器,這些槍被夾在槍架上,圍繞著封裝大致均勻排列。根據中子槍這個名字,可以認為中子會從每一支槍的末端服射出,射入核彈的中軸。每一支槍射出的中子都會在中子聚焦透鏡的作用下射向初級核彈中心,以增強鈽的裂變。 下面還描述了聚苯乙烯極化/等離子源。
第一份公開提到了級間結構的美國政府文檔是是最近提供給公眾的關於宣傳可靠性替換核彈頭計畫的文檔。其中有一張圖片分項描述了可靠性體更換核彈頭的可能優勢,其中一項是級間結構的新設計將會替換原來的易碎的有毒材料以及需要唯一的工廠製造的昂貴的專用材料易碎的有毒材料很可能是,因為它符合這個描述,而且也可以調節初級核彈的中子流量。當然,也有可能採用一些通過特別方式吸收並重新輻射X-射線的材料。而專門的材料名為FOGBANK,這其實是一個尚未解密的代號。它的成分目前仍是機密,但是有人認為它可能是一種氣溶膠生命延長計畫要求這種物質在停產多年以後重新開始生產。Y-12工廠目前是唯一的提供者,這也是唯一的工廠所指。製造過程涉及一種名為氰化甲烷的物質,這種物質有一定毒性,是一種高揮發性的溶劑,對工人有害,僅僅在2006年三月就引起了三次疏散。

總結

對以上的解釋簡要總結如下:
  1. 在初級階段需要引爆一枚內爆型裂變彈。如果在初級核彈彈芯中加入少量的混合氣體,在爆炸過程中這些氣體將會被壓縮的同時引發核聚變。聚變過程中釋放的中子將會引發初級階段中使用的鈽-239或者鈾-235更多的鏈式反應。使用聚變燃料可以提升裂變反應的效率,這種設計被稱為聚變增強。如果沒有這種設計,很大一部分可裂變物質在炸彈被炸開前還沒有來得及反應,於是就白白浪費了。小男孩核彈中鈾的效率僅有1.4%,而胖子核彈也只有14%,就是因為沒有使用聚變增強裂變這個技術。
  2. 初級階段釋放出的能量傳遞給次級階段。這個過程準確的機制仍然是未知的。傳遞來得能量將聚變燃料和火花塞壓縮,被壓縮的火花塞達到了臨界質量以後開始裂變的鏈式反應,反應放出的能量將聚變燃料加熱到足夠高的溫度以後就會引發聚變,同時反應也為聚變燃料中的提供中子,以製造氚來進行聚變。一般來說,根據氣體定律,在有限的空間內提升氣體分子的動能會同時增加氣體的溫度和壓強。
  3. 次級核彈的聚變燃料還可以使用貧鈾或者天然鈾包裹起來。雖然鈾-238不是能夠維持鏈式反應的可裂變物質,但是它仍然可以在聚變釋放出的高能中子的轟擊下發生裂變,釋放出大量能量。
實際生產的熱核武器的設計可能會發生一些變動。比如,可能不使用聚變增強的初級核彈、使用不同種類的聚變燃料、可能在聚變燃料周圍包裹一層(或其它中子反射物質)以避免發生進一步的裂變。

設計變種

目前已經提出一些可能的武器設計的變種
  • 是否採用鈾-238製作最後一級裂變的反射層。
  • 在一些描述中,增加的內部結構可以用來保護次級核彈不受初級核彈釋放的過量中子的影響。
  • 封裝內部可能會也可能不會被加工成能夠反射X射線。X射線的反射與鏡子反射光線不同,而是反射器的金屬被X射線加熱,使得金屬自身發射X射線,隨後被送往次級核彈。
下面將會談到兩個專門的變種:常春藤麥克核試驗中的低溫冷卻的液化氘和卵形初級橢球形次級的W88核彈的公認設計。大多數核彈並沒有明顯地包含有第三級。美國曾被認為製作一種這樣的型號的核彈,威力巨大的兩千五百萬噸當量的B41核彈,而蘇聯也被認為使用多級級數造出了五千萬噸級的沙皇炸彈。目前除了關於蘇聯的Sloika設計,沒有任何公開的關於其它實驗成功的非泰勒-烏拉姆構型的氫彈的記載。
從根本上說,泰勒-烏拉姆構型依賴於至少兩次內爆:第一次,次級核彈中傳統的化學爆炸將會壓縮裂變彈芯,使得裂變比化學爆炸強烈許多倍;第二次,初級核彈中產生的輻射被用於壓縮並點燃次級核彈,引起聚變的爆炸,又是第一次核爆的許多倍。這種壓縮的鏈可能會有任意多級,這種設計的威力可能被放大到任意倍,直到末日裝置的水平。但是目前熱核武器的當量不超過數十兆噸,而且一般也認為已經足夠摧毀最大的實際目標了。

相關詞條

熱門詞條

聯絡我們