《隨機積分導論(第2版)》是2014年世界圖書出版公司出版的著作,作者是[美] 鐘開萊(K.L.Chung),R.J.Williams。
基本介紹
- 書名:《隨機積分導論(第2版)》
- 作者:[美] 鐘開萊(K.L.Chung),R.J.Williams
- 出版社:世界圖書出版公司
- 出版時間:2014-03-01
內容簡介,目錄,
內容簡介
《隨機積分導論(第2版)(英文版)》是一部可讀性很強的講述隨機積分和隨機微分方程的入門教程。將基本理論和套用巧妙結合,非常適合學習過機率論知識的研究生,學習隨機積分。運用現代方法,隨機積分的定義是為了可料被積函式和局部鞅,緊接著是連續鞅的變分公式ito變化。《隨機積分導論(第2版)(英文版)》包括在布朗運動的描述、鞅的hermite多項式、feynman-kac泛函和schrodinger方程。這是第二版,討論了cameron-martin-giranov變換,並且在最後一章引入隨機微分方程和一些學生用的練習。
目錄
Preface
Preface to the First Edition
Abbreviations and Symbols
1. Preliminaries
1.1 Notations And Conventions
1.2 Measurability, Lp Spaces And Monotone Class Theorems
1.3 Functions of Bounded Variation And Stieltjes Integrals
1.4 Probability Space, Random Variables, Filtration
1.5 Convergence, Conditioning
1.6 Stochastic Processes
1.7 Optional Times
1.8 Two Canonical Processes
1.9 Martingales
1.10 Local Martingales
1.11 Exercises
2. Definition of The Stochastic Integral
2.1 Introduction
2.2 Predictable Sets And Processes
2.3 Stochastic Intervals
2.4 Measure on The Predictable Sets
2.5 Definition of The Stochastic Integral
2.6 Extension To Local Integrators And Integrands
2.7 Substitution Formula
2.8 A Sufficient Condition for Extendability of Hz
2.9 Exercises
3. Extension of The Predictable Integrands
3.1 Introduction
3.2 Relationship Between P, O, And Adapted Processes
3.3 Extension of The Integrands
3.4 A Historical Note
3.5 Exercises
4. Quadratic Variation Process
4.1 Introduction
4.2 Definition And Characterization of Quadratic Variation
4.3 Properties of Quadratic Variation For An L2-Wartingale
4.4 Direct Definition of ΜM
4.5 Decomposition of (M)2
4.6 A Limit Theorem
4.7 Exercises
5. The Ito Formula
5.1 Introduction
5.2 One-Dimensional It5 Formula
5.3 Mutual Variation Process
5.4 Multi-Dimensional It5 Formula
5.5 Exercises
……
6. Applications of The Ito Formula
7. Local Time and Tanaka's Formula
8. Reflected Brownian Motions
9. Generalized Fro Formula,Change of Time and Measure
10. Stochastic Differential Equations
Preface to the First Edition
Abbreviations and Symbols
1. Preliminaries
1.1 Notations And Conventions
1.2 Measurability, Lp Spaces And Monotone Class Theorems
1.3 Functions of Bounded Variation And Stieltjes Integrals
1.4 Probability Space, Random Variables, Filtration
1.5 Convergence, Conditioning
1.6 Stochastic Processes
1.7 Optional Times
1.8 Two Canonical Processes
1.9 Martingales
1.10 Local Martingales
1.11 Exercises
2. Definition of The Stochastic Integral
2.1 Introduction
2.2 Predictable Sets And Processes
2.3 Stochastic Intervals
2.4 Measure on The Predictable Sets
2.5 Definition of The Stochastic Integral
2.6 Extension To Local Integrators And Integrands
2.7 Substitution Formula
2.8 A Sufficient Condition for Extendability of Hz
2.9 Exercises
3. Extension of The Predictable Integrands
3.1 Introduction
3.2 Relationship Between P, O, And Adapted Processes
3.3 Extension of The Integrands
3.4 A Historical Note
3.5 Exercises
4. Quadratic Variation Process
4.1 Introduction
4.2 Definition And Characterization of Quadratic Variation
4.3 Properties of Quadratic Variation For An L2-Wartingale
4.4 Direct Definition of ΜM
4.5 Decomposition of (M)2
4.6 A Limit Theorem
4.7 Exercises
5. The Ito Formula
5.1 Introduction
5.2 One-Dimensional It5 Formula
5.3 Mutual Variation Process
5.4 Multi-Dimensional It5 Formula
5.5 Exercises
……
6. Applications of The Ito Formula
7. Local Time and Tanaka's Formula
8. Reflected Brownian Motions
9. Generalized Fro Formula,Change of Time and Measure
10. Stochastic Differential Equations