2 Wen Liu, Xiaoling Li, Yum-Shing Wong, Wenjie Zheng*, Yibo Zhang, Wenqiang Cao, Chen Tianfeng*. Selenium nanoparticles as a carrier of 5-Fluorouracil to achieve anticancer synergism. ACS Nano, 2012, 6 (8), 6578–6591. (IF=12.062)
3 Li Y, Li X, Wong YS, Chen Tianfeng*, Zhang H, Liu C, Zheng W*. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials, 2011, 32, 9068-9076. (IF=7.404)
5 Yinghua Li, Xiaoling Li*, Wen-Jie Zheng, Cundong Fan, Yibo Zhang and Tianfeng Chen*. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways J. Mater. Chem. B, 2013, 2013, 1 (46), 6365 – 6372. (封面文章)
6 Cundong Fan, Wenjie Zheng*, Xiaoyan Fu, Xiaoling Li, Yum-Shing Wong, Tianfeng Chen*. Strategy to enhance the therapeutic effect of doxorubicin in human hepatocellular carcinoma by selenocystine, a synergistic agent that regulates the ROS-mediated signaling. Oncotarget, 2014, 5(9), 2853-2863. (IF=6.636)
7 Cundong Fan; Jingjing Chen; Yi Wang; Yum-Shing Wong; Yibo Zhang; Wenjie Zheng; Wenqiang Cao; Chen Tianfeng*. Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering ROS-mediated DNA damage and inactivation of ERK pathway. Free Radical Biology & Medicine. 2013, 65, 305-316. (IF=5.423)
8 Hualian Wu, Xiaoling Li, Wen Liu, Tianfeng Chen*, Yinghua Li, Wenjie Zheng and Ka-Hing Wong*. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and anticancer activity. Journal of Materials Chemistry, 2012, 22, 9602–9610. (IF=6.101)
8 Yibo Zhang, Xiaoling Li, Zhi Huang, Wenjie Zheng, Cundong Fan, Tianfeng Chen*. Enhancement of Cell Permeabilization and Apoptosis-inducing Activity of Selenium Nanoparticles by ATP Surface Decoration. Nanomedicine: Nanotechnology, Biology, and Medicine. 2013, 9, 74–84. (IF=6.692)
9 Chen Tianfeng, Yanan Liu, Wenjie Zheng, Jie Liu, Yum-Shing Wong. Ruthenium polypyridyl complexes target mitochondria and induce cancer cell apoptosis. Inorganic Chemistry. 2010, 49, 6366-6368. (IF=4.601)
10 Chen Tianfeng, Yum-Shing Wong. Selenocystine induces caspase-independent apoptosis in MCF-7 human breast carcinoma cells with involvement of p53 phosphorylation and reactive oxygen species generation. The International Journal of Biochemistry & Cell Biology. 2009, 41, 666-676. (IF=4.634)
11 Chen Tianfeng, Yum-Shing Wong. Selenocystine induces apoptosis of human melanoma A-375 cells by activating ROS-mediated mitochondrial pathway and p53 phosphorylation. Cellular and Molecular Life Sciences. 2008, 65, 2763-75. (IF=6.57)
13 Yibo Zhang , Shanyuan Zheng , Jun-Sheng Zheng , Ka-Hing Wong , Zhi Huang , Sai-Ming Ngai , Wenjie Zheng*, Yum-Shing Wong , and Tianfeng Chen*. Synergistic induction of apoptosis by methylseleninic acid and cisplatin, the role of ROS-ERK/AKT-p53 pathway. Mol. Pharmaceutics, 2014, 11 (4), 1282–1293. (IF=4.57)
14 Cundong Fan, Wenjie Zheng, Xiaoyan Fu, Xiaoling Li*, Yum-Shing Wong, Tianfeng Chen*. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death & Disease. 2014, 5, e1191. (IF=6.044)
15 Wenqiang Cao, Xiaoling Li, Shanyuan Zheng, Wenjie Zheng*, Yum-shing Wang, Tianfeng Chen*. Selenocysteine derivative overcomes TRAIL resistance in melanoma cells: evidence for ROS-dependent synergism and signaling crosstalk. Oncotarget, 2014, in press. (IF=6.636)