金屬焊接

金屬焊接

金屬焊接是一種連線金屬的製造或雕塑過程。焊接過程中,工件和焊料熔化或不熔化,形成材料直接的連線焊縫。這一過程中,通常還需要施加壓力來接合焊件。

基本介紹

  • 中文名:金屬焊接
  • 外文名:Metal Welding
  • 操作方法:有40種以上
  • 主要分類:熔焊、壓焊和釺焊
種類,操作方法,熔焊,壓焊,釺焊,雷射焊接,歷史,發展,

種類

Metal Welding
普通焊接與硬釺焊(brazing)和軟釺焊(soldering)的區別在於軟釺焊通過融化熔點較低(低於工件本身的熔點)的焊料來形成連線,無需加熱熔化工件本身。
焊接的能量來源有很多種,包括氣體焰、電弧、雷射、電子束、摩擦和超音波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。

操作方法

金屬焊接方法有40種以上,主要分為熔焊、壓焊和釺焊三大類:

熔焊

熔焊是在焊接過程中將工件接口加熱至熔化狀態,不加壓力完成焊接的方法。熔焊時,熱源將待焊兩工件接口處迅速加熱熔化,形成熔池。熔池隨熱源向前移動,冷卻後形成連續焊縫而將兩工件連線成為一體。
在熔焊過程中,如果大氣與高溫的熔池直接接觸,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨後冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷,惡化焊縫的質量和性能。
為了提高焊接質量,人們研究出了各種保護方法。例如,氣體保護電弧焊就是用氬、二氧化碳等氣體隔絕大氣,以保護焊接時的電弧不被氧化,避免形成缺欠;又如鋼材焊接時,在焊條藥皮中加入對氧親和力大的鈦鐵粉進行脫氧,就可以保護焊條中有益元素錳、矽等免於氧化而進入熔池,冷卻後獲得優質焊縫。

壓焊

壓焊是在加壓條件下,使兩工件在固態下實現原子間結合,又稱固態焊接。常用的壓焊工藝是電阻對焊,當電流通過兩工件的連線端時,該處因電阻很大而溫度上升,當加熱至塑性狀態時,在軸向壓力作用下連線成為一體。
各種壓焊方法的共同特點是在焊接過程中施加壓力而不加填充材料。多數壓焊方法如擴散焊、高頻焊、冷壓焊等都沒有熔化過程,因而沒有象熔焊那樣的有益合金元素燒損,和有害元素侵入焊縫的問題,從而簡化了焊接過程,也改善了焊接安全衛生條件。同時由於加熱溫度比熔焊低、加熱時間短,因而熱影響區小。許多難以用熔化焊焊接的材料,往往可以用壓焊焊成與母材同等強度的優質接頭。

釺焊

釺焊是使用比工件熔點低的金屬材料作釺料,將工件和釺料加熱到高於釺料熔點、低於工件熔點的溫度,利用液態釺料潤濕工件,填充接口間隙並與工件實現原子間的相互擴散,從而實現焊接的方法。

雷射焊接

由光學震盪器及放在震盪器空穴兩端鏡間的介質所組成。介質受到激發至高能量狀態時,開始產生同相位光波且在兩端鏡間來回反射,形成光電的串結效應,將光波放大,並獲得足夠能量而開始發射出雷射。
雷射亦可解釋成將電能、化學能、熱能、光能或核能等原始能源轉換成某些特定光頻(紫外光、可見光或紅外光)的電磁輻射束的一種設備。轉換形態在某些固態、液態或氣態介質中很容易進行。當這些介質以原子或分子形態被激發,便產生相位幾乎相同且近乎單一波長的光束-雷射。由於具同相位及單一波長,差異角均非常小,在被高度集中以提供焊接、切割及熱處理等功能前可傳送的距離相當長。

歷史

19世紀末之前,唯一的焊接工藝是鐵匠沿用了數百年的金屬鍛焊。最早的現代焊接技術出現在19世紀末,先是弧焊和氧燃氣焊,稍後出現了電阻焊。20世紀早期,第一次世界大戰和第二次世界大戰中對軍用設備的需求量很大,與之相應的廉價可靠的金屬連線工藝受到重視,進而促進了焊接技術的發展。戰後,先後出現了幾種現代焊接技術,包括目前最流行的手工電弧焊、以及諸如熔化極氣體保護電弧焊、埋弧焊、藥芯焊絲電弧焊和電渣焊這樣的自動或半自動焊接技術。20世紀下半葉,焊接技術的發展日新月異,雷射焊接和電子束焊接被開發出來。今天,焊接機器人在工業生產中得到了廣泛的套用。研究人員仍在深入研究焊接的本質,繼續開發新的焊接方法,並進一步提高焊接質量。

發展

焊接自動化技術的現狀與展望
隨著數位化技術日益成熟,代表處動地接技術的數字焊機、數位化控制技術業已穩步進入市場。三峽工程、西氣東輸工程、航天工程、船舶工程等國家大型基礎工程,有效地促進了先進焊接特別是焊接自動化技術的發展與進步。汽車及零部件的製造對焊接的自動化程度要求日新月異。我國焊接產業逐步走向“高效、自動化、智慧型化”。我國的焊接自動化率還不足30%,同發達工業國家的80%差距甚遠。從20世紀未國家逐漸在各個行業推廣自動焊的基礎焊接方式——氣體保護焊,來取代傳統的手工電弧焊,已初見成效。可以預計在未來,國內自動化焊接技術將以前所未有的速度發展。
高效、自動化焊接技術的現狀
20世紀90年代,我國焊接界把實現焊接過程的機械化、自動化作為戰略目標,已經在職各行業的科技發展中付諸實施,在發展焊接生產自動化,研究和開發焊接生產線及柔性製造技術,發展套用計算機輔助設計與製造;其中藥芯焊絲的增長幅度明顯加大,在未來20年內會超過實芯焊絲,最終將成為焊接中心的主導產品。
焊接自動化技術的展望
電子技術、計算機微電子住處和自動化技術的發展,推動了焊接自動化技術的發展。特別是數控技術、柔性製造技術和信息處理技術等單元技術的引入,促進了焊接自動化技術革命性的發展。
(1)焊接過程控制系統的智慧型化是焊接自動化的核心問題之一,也是未來開展研究的重要方向。應開展最佳控制方法方面的研究,包括線性和各種非線性控制。最具代表性的是焊接過程的模糊控制、神經網路控制,以及專家系統的研究。
(2)焊接柔性化技術也是著力研究的內容。在未來的研究中,將各種光、機、電技術與焊接技術有機結合,以實現焊接的精確化和柔性化。用微電子技術改造傳統焊接工藝裝備,是提高焊接自動化水平淡的根本途徑。將數控技術配以各類焊接機械設備,以提高其柔性化水平,是當前的一個研究方向;另外,焊接機器人與專家系統的結合,實現自動路徑規劃、自動校正軌跡、自動控制熔深等功能是研究的重點。
(3)焊接控制系統的集成是人與技術的集成和焊接技術與信息技術的集成。集成系統中信息流和物質流是其重要的組成部分,促進其有機地結合,可大大降低信息量和實時控制的要求。注意發揮人在控制和臨機處理的回響和判斷能力,建立人機聖誕的友好界面,使人和自動系統和諧統一,是集成系統的不可低估的因素。
(4)提高焊接電源的可靠性、質量穩定性和控制,以及優良的動感性,也是著重研究的課題。開發研製具有調節電弧運動、送絲和焊槍姿態,能探測焊縫坡開頭、溫度場、熔池狀態、熔透情況,適時提供焊接規範參數的高性能焊機,並應積極開發焊接過程的計算機模擬技術。使焊接技術由“技藝”向“科學”演變輥實現焊接自動化的一個重要方面。本世紀頭十年,將是焊接行業飛速發展的有利時期。我們廣大焊接工作者任重而道遠,務必樹立知難而上的決心。抓住機遇,為我國焊接自動化水平的提高而努力奮鬥。

相關詞條

熱門詞條

聯絡我們