邵遠夫

邵遠夫

邵遠夫,男,博士,教授,碩士研究生導師,中共黨員。主要研究方向:微分方程與動力系統,主要致力於複雜動力系統的定性研究。

基本介紹

  • 中文名:邵遠夫
  • 職業:碩士研究生導師
  • 學位/學歷:博士
  • 職務:教授
個人資料,工作經歷,研究方向,主要成就,個人作品,

個人資料

邵遠夫,男,博士,教授,碩士研究生導師,中共黨員。主要研究方向:微分方程與動力系統,主要致力於複雜動力系統的定性研究。目前主持國家自然科學基金、廣西自然科學基金和校博士啟動基金等項目3項,主持完成省部級等項目3項,參與國家自然科學基金、教育部特色專業基金、科技廳自然科學基金等項目5項。在Nonlinear Anal.、Neurocomputing、Appl. Math. Comput.等國際著名學術期刊發表SCI收錄研究論文55篇,是Nonl. Anal.RWA、Fi、Jamc、Appl. Math. Comput、美國數學評論等期刊的特約審稿人或評論員。

工作經歷

1993.9~1996.6 邵陽學院學習
1996.7~2002.8 湖南洞口縣任教
2002.9~2005.6 雲南大學學習
2005.7~2010.12 貴州師範大學任教
2007.9~2010.6 中南大學學習
2011.1~至今 桂林理工大學任教

研究方向

微分方程與動力系統,主要致力於複雜動力系統的定性研究。

主要成就

多因素影響微分系統定性研究與仿真分析,國家自然科學基金(11161015),主持,2012.1-2015.12.
種群博弈Nash平衡的精煉與演化動力學研究,國家自然科學基金(11161011),參與,2012.1-2015.12
脈衝微分方程的周期解及相關問題研究,國家自然科學基金(10971229),參與,2010.1-2012.12
具脈衝影響的種群生態系統的動力學研究,廣西自然科學基金(2013GXNSFAA019003),主持,2013.04-2016.03
非參數估計方法的機率極限理論及其在經濟的套用研究,廣西自然科學基金重點項目(2013GXNSFDA019001),參與,2013.04-2016.03
統計數據分析與信息處理技術,廣西高校人才小高地資助創新團隊桂教人〔2011〕47 號,參與,2012.1-2014.12
混合雲環境下信任關鍵技術研究,廣西自然科學基金(2013GXNSFAA019349),參與, 2013.04-2016.03
無限局中人博弈NASH平衡的穩定性研究,貴州自然科學基金(黔合科J字[2010]2147),參與,2010.6-2012.12
脈衝微分系統的動力學性質研究,博士啟動基金(01080),主持,2011.1-2013.12.
常微分方程課程團隊建設,教育部高等學校特色專業建設點基金資助項目(TS2375),參與,2007.6~2012.6
脈衝BAM神經網路系統周期解存在與穩定性研究,貴州省教育廳青年老師基金項目(20090038),主持,2010.1~2012.12。

個人作品

QIANHONG ZHANG, YUANFU SHAO and JINGZHONG LIU, EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS FOR IMPULSIVE FCNNs WITH MIXED DELAYS ON TIME SCALES,ANALELE STIINTIFICE ALE UNIVERSIT?AT II "AL.I. CUZA" DIN IASI (S.N.),MATEMATIC?A, (S.N.),MATEMATIC?,pages 24.DOI:10.2478/aicu-2014-0005。
[54] Qianhong Zhang, Wenzhuan Zhang, Yuanfu Shao, Jingzhong Liu ,On a Fuzzy Logistic Difference Equation, WSEAS TRANSACTIONS on MATHEMATICS,Volume 13, 2014, 282-290.
[53] Zhixiang Ju, Yuanfu Shao,*, Xiaolan Xie , Xiangmin Ma, Xianjia Fang, The dynamics of an impulsive predator-prey system with stage-structure and Holling Ⅲfunction respons, Abstract and Applied Analysis Volume 2014, Article ID 183526, in press. (SCI)
[52] Yuanfu Shao, Xiaolan Xie, and Zhixiang Ju, Global Attractivity of Positive Periodica Delayed Predator-Prey System with Journal of Applied Mathematics, Volume 2014, Article ID 459451, 9 pages. (SCI)
[51] Ying Li, Yuanfu Shao*, DYNAMIC ANALYSIS OF AN IMPULSIVE DIFFERENTIAL EQUATION WITH TIME-VARYING DELAYS, APPLICATIONS OF MATHEMATICS 59 (2014) 85–98. (SCI)
[50] Zhixiang Ju , Yuanfu Shao* ,Weili Kong , Xiangmin Ma and Xianjia Fang,An impulsive prey-predator system with stage-structure and Holling II functional response,Advances in Difference Equations 2014, 2014:280 doi:10.1186/1687-1847-2014-280.(SCI)
[49] Li chenglin , Wang xuhuang, Shao Yuanfu, steady states of a predator-prey model with prey taxis, Nonlinear Anal. RWA. 2014,97:155-168. (SCI)
[48] Zhixiang Ju and Yuanfu Shao*, Existence and Stability of Periodic Solution for an Immune System with Delays and Impulses, Applied Mathematical Sciences, Vol. 8, 2014, no. 12, 579 – 588.
[47] Qianhong Zhang, Wenzhuan Zhang, Yuanfu Shao, Jingzhong Liu,On the System of High Order Rational Difference Equations . International Scholarly Research Notices, Volume 2014, Article ID 760502, 5 pages。
[46] Yuanfu Shao, Ying Li,Dynamical analysis of a stage structured predator–prey system with impulsive diffusion and generic functional response,Applied Mathematics and computation220 (2013) 472–481。(SCI)
[45] Qianhong Zhang, Yuanfu Shao and Jingzhong Liu,Analysis of stability for impulsive fuzzy Cohen–Grossberg BAM neural networks with delays,Math. Method Appl. Science,36 (2013)773-779. (SCI)
[44] Yuanfu Shao and Qianhong Zhang,Stability and periodicity for impulsive neural networks with delays,Advances in Difference Equations 2013, 2013:352。(SCI)
[43] Qianhong Zhang, Jingzhong Liu, Yuanfu Shao, Analysis of stability for impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays,WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS。
[42]張千宏,邵遠夫,劉璟忠,隨機時滯模糊細胞神經網路均方指數穩定性分析,江西師範大學學報( 自然科學版) 2013,37(2)195-198。
[41]Zhang qianhong, Yang Lihui, Shao Yuanfu, Delayed dependent stability analysis of fuzzy Cohen_Grossberg neural networks with impulse, Publications Mathematicae-debrecen, 83 (2013) 569-582。(SCI)
[40] Shao Yuanfu, Xu Changjin, and Zhang Qianhong,Globally Exponential Stability of Periodic Solutions to Impulsive Neural Networks with Time-Varying Delays,Abstract and Applied Analysis Volume 2012, Article ID 358362, doi:10.1155/2012/358362.(SCI)
[39] Shao Yuanfu, Dynamic analysis of an impulsive predator-prey model with disease in prey and Ivlev-type functional response, Abstract and Applied Analysis Volume 2012, Article ID 750530.(SCI)
[38] Shao Yuanfu, Globally asymptotical stability and periodicity for a nonautonomous two-species system with diffusion and impulses , Applied Mathematical Modelling , 2012,36:288-300.(SCI)
[37] Yuanfu Shao,Existence of exponential periodic attractor of BAM neural networks with time-varying delays and impulses,Neurocomputing,2012,93:1–9.(SCI)
[36]邵遠夫, 一類脈衝多時滯互惠系統周期解的存在性與穩定性,四川師範大學學報(自然科學版),2012,35:33-38. (核刊)
[35] Shao Yuanfu,Tang Guoqiang, Existence of periodic solution and persistence for a delayed predator-prey system with diffusion and impulse, J. Appl. Math. & Informatics. 2012,30: 429 - 444.
[34] Shao Yuanfu, Guoqiang Tang and Wu Ai, Exponential periodic attractor and exponential convergence of a class of functional differential equation with time-varying delays, Elixir Appl. Math. 2012, 42: 6157-6163.
[33] Shao Yuanfu, Tang Guoqiang, Ai Wu, Exponential stability of periodic solutions for neural networks with impulse and delays, International Conference on Mathematics and sustainable Development within SCET 2012, 36-38.(EI)
[32] Shao Yuanfu, Tang Guoqiang, Periodic solutions and global attractivity of an impulsive Host-macroparasite model with delays, Chinese Quarl. Jour. Math. 2012, 27:301-307.
[31] Changjin Xu, Peiluan Li and Yuanfu Shao,Existence and global attractivity of positive periodic solutions for a Holling II two-prey one-predator system, Advances in Difference Equations, 2012, 2012:84. (SCI)
[30] Changjin Xu , Yuanfu Shao, Existence and global attractivity of periodic solution for enterprise clusters based on ecology theory with impulse, J Appl Math Comput , 2012, 39:367–384. (EI)
[29] 邵遠夫,冪級數求和方法初探,時代報告,2012, 6:043.(教改)
[28 邵遠夫, 數學分析課程定義教學探究,四川師範大學學報(自然科學版教育專輯),2012, 35:362-364.(教改)
[27]Changjin Xu, Yuanfu Shao, and Peiluan Li, Uniformly Strong Persistence for a Delayed Predator-Prey Model, Journal of Applied Mathematics, Volume 2012, Article ID 358918, 7 pages (SCI).
[26] Shao yuanfu, Zhou yonghui. Existence of exponential periodic attractor of a class of impulsive differential equation with time-varying delays. Nonlinear Analysis TMA. 2011,74:1107-1118. (SCI)
[25] Shao Yuanfu,Exponential stability of periodic neural networks with impulsive effects and time-varying delays.Appl. Math. Comput. 2011,217:6893-6899. (SCI)
[24] Shao Yuanfu, Ying Li, Changjin Xu. Periodic solutions for a class of nonautonomous differential system with impulses and time-varying delays. Acta Appl. Math. 2011,115: 105-121. (SCI)
[23] Shao Yuanfu, Dai Binxiang. Existence and globally asymptotical stability of periodic solutions for two‐species non‐autonomous diffusion competition n‐patch system with time delay and impulses. J. Appl. Math. Comput. 2011,36:141-161.(EI)
[22] Shao Yuanfu, Periodic solutions and Global attractivity of functional differential equations with impulse and delays,寧夏大學學報(自然科學版)2011,32:214-225.
[21] Shao Yuanfu. Multiple positive periodic solutions of a delayed ratio‐dependent predatorprey model with functional response and impulse. 套用數學,2011,24:30-39.
[20] Shao Yuanfu. Global exponential stability of BAM neural networks with impulses and distributed delays. J. Appl. Math. & Informatics, 2011,29:103-117.
[19] Tang Guoqiang, Shao Yuanfu(通訊作者), Existence of positive periodic solutions for impulsive functional differential equation on time scales, Advance. Appl. Math. Science, 2011,10: 571-582.
[18] Changjin Xu, Yuanfu Shao, Bifurcations in a predator-prey model with discrete and distributed time delay , Nonlinear Dyn, DOI 10.1007/s11071-011-0140-1. (SCI)
[17] 邵遠夫,數學物理方程教學方法探究,貴州師範大學學報(社會科學版增刊),2011,6:257-258。(教改)
[16] Shao Yuanfu, Dai Binxiang. The dynamics of an impulsive delay predator‐prey model with stage structure and Beddington‐type functional response. Nonlinear Anal. RWA. 2010,11: 3567-3576. (SCI)
[15] Shao Yuanfu,Dai binxiang, Luo zhenguo. The dynamics of an impulsive delay one prey multi-predator model with Holling-II functional response. Appl. Math. Comput. 2010,217:2414-2424. (SCI)
[14] Shao Yuanfu. Analysis of a delayed predator‐prey system with impulsive diffusion between two patches. Math. Comp. Model., 2010, 52: 120-127. (SCI)
[13] Shao Yuanfu, Dai Binxiang. The existence of exponential periodic attractor of impulsive BAM neural network with time-varying coefficients and distributed delays. Neurocomputing 2010, 73:3123-3131. (SCI)
[12] Shao Yuanfu. Existence of positive periodic solutions for a neural delay impulsive system on time scale. 數學進展,2010, 39: 224-232.
[11] Shao Yuanfu, Dai Binxiang. Existence of positive periodic solutions for a neural delay impulsive system. 套用數學, 2010, 23: 331-339.
[10] Shao Yuanfu, Dai Binxiang. The dynamics of a delayed predator‐prey system with Holling‐type II functional response and impulsive diffusion. the 7th Conference on Biological Dynamic System and Stability of Differential Equation, Chongqing, 2010, 235-239. (ISTP)
[9] Shao Yuanfu, Existence of three positive periodic solutions for a class of functional differential equation with delays. 貴州師範大學學報(自然科學版),2010, 28: 63-65.
[8] 邵遠夫,熊向輝,肖金戈,常微分方程教學的積澱思考,貴州師範大學學報(教育科學版),2010,6:149-151.(教改)
[7] 邵遠夫,肖金戈, 高等代數方法在中學數學中的套用,銅仁學院學報,2008,2:81-84。
[6] 李培巒,周雪剛,邵遠夫,張小勇,一類二階三點非齊次邊值問題正解的存在性,數學理論套用,2008,2:24-27.
[5] 邵遠夫,李陪巒,一類脈衝延滯微分方程正周期解存在的充分條件,四川師範大學學報(自然科學版),2008,31:549-553.
[4] 邵遠夫,一類含有時滯與擴散的捕食--追捕系統的持續生存,貴州師範大學學報(自然科學版),2008,26:65-67.
[3] Shao Yuanfu. Existence of positive periodic solutions for a neural delay Lotka‐Volterra system with impulsive effects.套用數學, 2009, 22: 168-176.
[2] Shao Yuanfu, Existence of positive periodic solution of a generalized n‐species competition model with impulse. 貴州師範大學學報(自然科學版),2009,27:46-51.
[1] 邵遠夫,李成林, Hilbert空間中函式和的次微分規則及套用,雲南大學學報(自然科學版)2004,26:475-478.

相關詞條

熱門詞條

聯絡我們