趙傑(中國科學院亞熱帶農業生態研究所研究員)

趙傑(中國科學院亞熱帶農業生態研究所研究員)

本詞條是多義詞,共99+個義項
更多義項 ▼ 收起列表 ▲

趙傑,男,博士,研究員,就職於中科院亞熱帶農業生態研究所。研究方向是土壤生態學和恢復生態學,研究興趣是植被與土壤生物相互作用,主要以土壤微生物和土壤線蟲群落為工具開展相關研究,關注土壤微生物群落和線蟲群落組成狀況及功能。目前已發表第一作者和通訊作者SCI論文30餘篇,主要發表在以下相關雜誌上:《Soil Biology & Biochemistry》、《Geoderma》、《Agriculture, Ecosystems & Environment》、《Plant and Soil》、《Forest Ecology and Management》等。先後獲得中國生態學學會青年科技獎、中科院青促會優秀會員、湖南省傑青、中科院西部學者和中科院廣州分院優秀青年科技工作者等榮譽稱號。

基本介紹

  • 中文名:趙傑
  • 職業:研究員
  • 性別:男
人物經歷,研究方向,主持項目,代表論著,

人物經歷

工作經歷
2020.01--至今 中國科學院亞熱帶農業生態研究所 研究員
2017.06—2018.03 University of Western Australia 訪問學者
2015.1--2019.12 中國科學院亞熱帶農業生態研究所 副研究員
2012.7--2014.12 中國科學院亞熱帶農業生態研究所 助理研究員
教育經歷
2011.1-2012.1 University of Vermont 聯合培養
2007.9-2012.7 中科院華南植物園 生態學/博士
2003.9-2007.7 山東大學(威海) 生物技術專業/理學學士

研究方向

土壤生態學、恢復生態學

主持項目

[1]國家重點研發計畫青年科學家項目:南方喀斯特農田土壤生態服務協同提升的生物調控機制與途徑(2022YFD1901000),2022.11-2025.12,主持;
[2]國家自然科學基金聯合基金重點支持項目:喀斯特關鍵帶水分和氮磷循環的土壤微食物網調控機制(U21A20189),2022.01-202025.12,主持;
[3]湖南省自然科學基金傑出青年基金:南方喀斯特草地土壤氮轉化關鍵微生物與線蟲互作對氮循環過程的影響機制(2021JJ10042),2021.01-2023.12,主持;
[4]中科院青年創新促進會優秀會員項目:土壤微食物網結構與功能(Y201969),2020.01-2022.12,主持;
[5]國家自然科學基金面上項目:喀斯特人工牧草生態系統管理對土壤微食物網的影響(41877055),2018.01-2021.12,主持;
[6]研究所青年創新團隊項目:喀斯特土壤生態服務提升的生物調控機制(2017QNCXTD_ZJ),2017.07-2020.06,主持;
[7]中科院西部之光西部學者:喀斯特水土要素耦合關係與土壤關鍵生態服務提升研究,2019.01-2021.12,主持;
[8]廣西自然科學基金面上項目:豆科灌木對喀斯特人工牧草生態系統土壤食物網的作用機制(2018JJA130004),2019.01-2020.12,主持;
[9]國家自然科學青年基金項目:喀斯特植被恢復初期土壤線蟲對添加和剔除豆科植物的回響(31300448),2014.1-2016.12,主持;

代表論著

[1]Liao, X., Fu, S., Zhao, J.*, 2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry 178: 108953.
[2]Li, J., Zhao, J.*, Liao, X., Yi, Q., Zhang, W., Lin, H., Liu, K., Peng, P., Wang, K., 2023. Long-term returning agricultural residues increases soil microbe-nematode network complexity and ecosystem multifunctionality. Geoderma 430, 116340.
[3]Li, Z., Chen, X., Li, J., Liao, X., Li, D., He, X., Zhang, W., Zhao, J.*, 2022. Relationships between soil nematode communities and soil quality as affected by land-Use type. Forests 13, 1658.
[4]Liao, X., Zhao, J.*, Xu, L., Tang, L., Li, J., Zhang, W., Xiao, J., Xiao, D., Hu, P., Nie, Y., Zou, D., Wang, K.*, 2023. Arbuscular mycorrhizal fungi increase the interspecific competition between two forage plant species and stabilize the soil microbial network during a drought event: Evidence from the field. Applied Soil Ecology 185, 104805.
[5]Liao, X., Zhao, J.*, Yi, Q., Li, J., Li, Z., Wu, S., Zhang, W., Wang, K.*, 2023. Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agriculture, Ecosystems & Environment 343, 108281.
[6]Wang, J., Wang, H., Lin, Q., Wu, Y., He, X., Chen, X., Yan, W.*, Zhao, J.*, 2023. Legume biological nitrogen fixation improves but chemical nitrogen fertilizer suppresses soil nematode communities in a Camellia oleifera plantation. Land Degradation & Development.
[7]Zhao, J., Wang, K.*, 2022. Methods for cleaning turbid nematode suspensions collected from different land-use types and soil types. Soil Ecology Letters 4, 429-434.
[8]Gao, D., Moreira-Grez, B., Wang, K., Zhang, W., Xiao, S., Wang, W., Chen, H., Zhao, J.*, 2021. Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic methods. Soil Biology and Biochemistry 155, 108162.
[9]Zhao, J., Xiao, J., Zhang, W., Fu, Z., Zhang, M., Liu, T., Tan, Q., Wang, K., 2019. A method for estimating nematode body lengths for use in the calculation of biomass via a simplified formula. Soil Biology and Biochemistry 134, 36-41.
[10]Gao, D., Wan, S., Fu, S., Zhao, J.*, 2021. Effects of understory or overstory removal on the abundances of soil nematode genera in a eucalyptus plantation. Frontiers in Plant Science 12, 640299.
[11]Liao, X., Song, T., Xiong, Y., Zou, D., Wang, K., Du, H., Zhao, J.*, 2021. Soil nematode communities on five oceanic islands across a latitudinal gradient in the north of the South China Sea: Influence of biotic and abiotic factors. Ecological Indicators 129, 107619.
[12]Gao, D., Wang, F., Li, J., Yu, S., Li, Z., Zhao, J.*, 2020. Soil nematode communities as indicators of soil health in different land use types in tropical area. Nematology 22, 595-610.
[13]Wang, Z., He, G., Hou, Z., Luo, Z., Chen, S., Lu, J., Zhao, J.*, 2021. Soil C:N:P stoichiometry of typical coniferous (Cunninghamia lanceolata) and/or evergreen broadleaved (Phoebe bournei) plantations in south China. Forest Ecology and Management 486, 118974.
[14]Ye, Y., Rui, Y., Zeng, Z., He, X., Wang, K., Zhao, J.*, 2020. Responses of soil nematode community to monoculture or mixed culture of a grass and a legume forage species in China. Pedosphere 30, 791-800.
[15]Zhao, J., Xun, R., He, X., Zhang, W., Fu, W., Wang, K., 2015. Size spectra of soil nematode assemblages under different land use types. Soil Biology and Biochemistry 85, 130-136.
[16]Li. J., Peng, P., Zhao, J.*, 2020. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters 2: 33-39
[17]Zhao, J., He, X., Zhang, W., Nie, Y., Fu, Z., Wang, K., 2015. Unusual soil nematode communities on karst mountain peaks in southwest China. Soil Biology and Biochemistry 88, 414-419.
[18]Zhao, J., Li, D., Fu, S., He, X., Fu, Z., Zhang, W., Wang, K., 2016. Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators 60, 310-316.
[19]Gao, D., Wang, X., Fu, S., Zhao, J.*, 2017. Legume plants enhance the resistance of soil to ecosystem disturbance. Frontiers in Plant Science 8.
[20]Zhang, W., Zhao, J.#, Pan, F., Li, D., Chen, H., Wang, K., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil 391, 77-91.
[21]Ciobanu, M., Popovici, I., Zhao, J.*, Stoica, I.-A., 2015. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania. Scientific Reports 5, 17606.
[22]Zhao, J., He, X., Wang, K., 2015. A hypothetical model that explains differing net effects of inorganic fertilization on biomass and/or abundance of soil biota. Theoretical Ecology 8, 505-512.
[23]Zhao, J., Li, S., He, X., Liu, L., Wang, K., 2014. The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLOS ONE 9, e112436.
[24]Zhao, J., Neher, D., 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology 64, 135-141.
[25]Zhao, J., Neher, D., 2014. Soil energy pathways of different ecosystems using nematode trophic group analysis: a meta analysis. Nematology 16, 379-385.
[26]Zhao, J., Neher, D., Fu, S., Li, Z., Wang, K., 2013. Non-target effects of herbicides on soil nematode assemblages. Pest Management Science 69, 679-684.
[27]Zhao, J., Shao, Y., Wang, X., Neher, D.A., Xu, G., Li, Z.a., Fu, S., 2013. Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecological Indicators 24, 236-239.
[28]Zhao, J., Wan, S., Fu, S., Wang, X., Wang, M., Liang, C., Chen, Y., Zhu, X., 2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management 310, 80-86.
[29]Zhao, J., Wan, S., Li, Z., Shao, Y., Xu, G., Liu, Z., Zhou, L., Fu, S., 2012. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry 49, 78-87.
[30]Zhao, J., Wan, S., Zhang, C., Liu, Z., Zhou, L., Fu, S., 2014. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in eucalyptus monocultures. PLOS ONE 9, e85513.
[31]Zhao, J., Wang, F., Li, J., Zou, B., Wang, X., Li, Z., Fu, S., 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry 75, 1-10.
[32]Zhao, J., Wang, X., Shao, Y., Xu, G., Fu, S., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry 43, 954-960.
[33]Zhao, J., Wang, X., Wang, X., Fu, S., 2014. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant and Soil 385, 273-286.
[34]Zhao, J., Zeng, Z., He, X., Chen, H., Wang, K., 2015d. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology 68, 61-68.
[35]Zhao, J., Zhang, W., Wang, K., Song, T., Du, H., 2014. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects. Applied Soil Ecology 74, 134-144.
[36]Zhao, J., Zhao, C., Wan, S., Wang, X., Zhou, L., Fu, S., 2015. Soil nematode assemblages in an acid soil as affected by lime application. Nematology 17, 179-191

相關詞條

熱門詞條

聯絡我們