訾建威,男,博士,中國地質大學地質過程與礦產資源國家重點實驗室研究員(特聘),博士生導師。
基本介紹
- 中文名:訾建威
- 畢業院校:中科院廣州地球化學研究所,西澳大利亞大學
- 學位/學歷:博士
- 職業:教師
- 專業方向:造山帶變質作用和熱液流體歷史研究
- 任職院校:中國地質大學地質過程與礦產資源國家重點實驗室
個人經歷,研究方向,主講課程,科研項目,學術成果,
個人經歷
教育經歷
1. 東北大學本科學士學位
2. 東北大學研究生碩士學位
3. 中科院廣州地球化學研究所和西澳大利亞大學研究生博士學位。
工作經歷
1. 2018.1 - 澳大利亞科廷大學JDL中心兼職研究員
2. 2018.1 - 中國地質大學地質過程與礦產資源國家重點實驗室研究員(特聘),博士生導師。
研究方向
[1] 造山帶變質作用和熱液流體歷史研究:獨居石、磷釔礦、榍石、金紅石等含鈾副礦物的高精度、微區原位U-Th-Pb年代學研究,特別用於厘定中-低溫變質作用及熱液流體活動相關成礦作用的精確時限,重建造山帶構造演化歷史
[2] 成礦作用U-Pb年代學研究:中低溫熱液成礦作用,如造山型金礦、卡林型金礦、沉積熱液型多金屬礦(Pb-Zn-Cu等),BIF型鐵礦等
[3] 火成碳酸岩和相關REE礦的獨居石U-Th-Pb年代學和Nd-O同位素示蹤
主講課程
地學英語文獻閱讀與寫作。
科研項目
[1]哀牢山構造帶內古特提斯俯衝碰撞變質事件的岩石學和磷酸鹽U-Pb年 代學研究, 國家自然科學基金, 2019/04/10-2022/12/31, 在研
學術成果
[1]Sun, L., Wang, Y., Fan, W. & Zi, J. 2008. Post-collisional potassic magmatism in the Southern Awulale Mountain, western Tianshan Orogen: Petrogenetic and tectonic implications. Gondwana Research, 14, 383-394.
[2]Zi, J., Fan, W., Wang, Y., Peng, T. & Guo, F. 2008. Geochemistry and petrogenesis of the Permian mafic dykes in the Panxi region, SW China. Gondwana Research, 14, 368-382.
[3]Zi, J.-W., Fan, W.-M., Wang, Y.-J., Cawood, P.A., Peng, T.-P., Sun, L.-H. & Xu, Z.-Q. 2010. U-Pb geochronology and geochemistry of the Dashibao Basalts in the Songpan-Ganzi Terrane, SW China, with implications for the age of Emeishan volcanism. American Journal of Science, 310, 1054-1080.
[4]Zhang, F., Wang, Y., Zhang, A., Fan, W., Zhang, Y. & Zi, J. 2012. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos, 150, 188-208.
[5]Zi, J.-W., Cawood, P.A., Fan, W.-M., Tohver, E., Wang, Y.-J. & McCuaig, T.C. 2012. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140–141, 166-182.
[6]Zi, J.-W., Cawood, P.A., Fan, W.-M., Wang, Y.-J. & Tohver, E. 2012. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleo-Tethys. Tectonics, 31, 1-18.
[7]Zi, J.-W., Cawood, P.A., Fan, W.-M., Wang, Y.-J., Tohver, E., McCuaig, T.C. & Peng, T.-P. 2012. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144–145, 145-160.
[8]Zi, J.-W., Cawood, P.A., Fan, W.-M., Tohver, E., Wang, Y.-J., McCuaig, T.C. & Peng, T.-P. 2013. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. American Journal of Science, 313, 81-112.
[9]Olierook, H.K.H., Sheppard, S., Johnson, S.P., Occhipinti, S.A., Reddy, S.M., Clark, C., Fletcher, I.R., Rasmussen, B., Zi, J.-W., Pirajno, F., LaFlamme, C., Do, T., Ware, B., Blandthorn, E., Lindsay, M., Lu, Y.-J., Crossley, R.J., Erickson, T.M., 2018. Extensional episodes in the Paleoproterozoic Capricorn Orogen, Western Australia, revealed by petrogenesis and geochronology of mafic–ultramafic rocks. Precambrian Research, 306, 22-40.
[10]Liu, H., Wang, Y., Fan, W., Zi, J., Cai, Y. & Yang, G. 2014. Petrogenesis and tectonic implications of Late-Triassic high Nd(t)- Hf(t) granites in the Ailaoshan tectonic zone (SW China). Science China Earth Sciences, 57, 2181-2194.
[11]Fan, W., Wang, Y., Zhang, Y., Zhang, Y., Jourdan, F. & Zi, J. 2015. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics, 662, 95-108.
[12]Zi, J.-W., Rasmussen, B., Muhling, J.R., Fletcher, I.R., Thorne, A.M., Johnson, S.P., Cutten, H.N., Dunkley, D.J. & Korhonen, F.J. 2015. In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Research, 260, 91-112.
[13]Qian, X., Wang, Y., Feng, Q., Zi, J.-W., Zhang, Y., and Chonglakmani, C., 2016, Zircon U–Pb geochronology, and elemental and Sr–Nd–Hf–O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust: International Journal of Earth Sciences, p. 1-15.
[14]Guo, X., Wang, Y., Liu, H., and Zi, J., 2016, Zircon U-Pb geochronology of the Cenozoic granitic mylonite along the Ailaoshan-Red river shear zone: New constraints on the timing of the sinistral shearing: Journal of Earth Science, v. 27, no. 3, p. 435-443.
[15]Qian, X., Wang, Y., Feng, Q., Zi, J.-W., Zhang, Y., and Chonglakmani, C., 2016, Petrogenesis and tectonic implication of the Late Triassic post-collisional volcanic rocks in Chiang Khong, NW Thailand: Lithos, v. 248–251, p. 418-431.
[16]Rasmussen, B., Zi, J.-W., Sheppard, S., Krape, B., and Muhling, J. R., 2016, Multiple episodes of hematite mineralization indicated by U-Pb dating of iron-ore deposits, Marquette Range, Michigan, USA: Geology, v. 44, no. 7, p. 547-550.
[17]Sheppard, S., Krapez, B., Zi, J-W., Rasmussen, B., and Fletcher, I. R., 2016, The 1310 Ma intracontinental Wongawobbin Basin, Pilbara, Western Australia: a far-field response to Albany-Fraser-Musgrave tectonics. Precambrian Research, v.285, p. 58-79.
[18]Sheppard, S., Fletcher, I. R., Rasmussen, B., Zi, J.-W., Muhling, J. R., Occhipinti, S., Wingate, M.T.D., Johnson, S.P., 2016, A new Paleoproterozoic tectonic history of the eastern Capricorn Orogen, Western Australia, revealed by U-Pb zircon dating of micro-tuffs: Precambrian Research, v. 286, p. 1-19.
[19]Roche, L. K., Korhonen, F.J., Johnson, S.P., Wingate, M.T.D., Hancock, E.A., Dunkley, D., Zi, J.-W., Rasmussen, B., Muhling, J.R., Occhipiniti, S.A., Dunbar, M., and Goldsworthy, J., 2017, The evolution of a granulite facies gold deposit from deposition to metamorphism: evidence from the Glenburgh deposit, Western Australia: Precambrian Research, v.290, p. 63-85.
[20]Qian, X., Wang, Y., Feng, Q., Zi, J.-W., and Zhang, Y., 2017, Geochronological and geochemical constraints on the high-Mg volcanic rocks from the Lampang–Den Chai area (NW Thailand) along the Chiang Khong–Lampang–Tak igneous zone and their tectonic implications: Gondwana Research, v.45, p. 8763-99.
[21]Sheppard, S., Krape?, B., Zi, J-W., Rasmussen, B., and Fletcher, I., 2017, SHRIMP U–Pb zircon geochronology establishes that banded iron formations are not chronostratigraphic markers across Archean greenstone belts of the north Pilbara Craton: Precambrian Research, v.292, p. 290-304.
[22]Liu, H., Wang, Y., and Zi, J.-W., 2016, Petrogenesis of the Dalongkai mafic-ultramafic intrusion and its tectonic implication for the Paleotethyan evolution in the Ailaoshan tectonic zone (SW China): Journal of Asian Earth Sciences, 141, 112-124.
[23]Sheppard, S., Rasmussen, B., Zi, J-W., Sekhar, V. S., Sarma, D. S., Mohan, M. R. Krape?, B., Wilde, S. A., and McNaughton, N. J., 2017, Sedimentation and mafic magmatism in the Paleoproterozoic Cuddapah Basin, India, as a consequence of lithospheric extension: Gondwana Research, 48, 153-163.
[24]Fielding, I., Johnson, S.P., Zi, J.-W., Rasmussen, B., Muhling, J.R., Dunkley, D.J., Sheppard, S., Meffre, S., Wingate, M.T.D., and Rogers, J., 2017, Using in situ SHRIMP U–Pb monazite and xenotime geochronology to determine the age of orogenic gold mineralization: an example from the Paulsens mine, southern Pilbara Craton: Economic Geology, 112(5), 1205.
[25]Piechocka, A.; Gregory, C.; Zi, J.-W.; Sheppard, S.; Wingate, M.T.D.; Rasmussen, B.; 2017, U-Th-Pb monazite geochronology to constrain emplacement ages of leucocratic low-temperature granites: Contributions to Mineralogy and Petrology, 172(8), 63.
[26]Sheppard, S.; Rasmussen, B.; Zi, J.-W.; Sekhar, V. S.; Sarma, D. S.; Mohan, M. R.; Krape?, B.; Wilde, S. A; McNaughton, N. J.; 2017, U-Pb dating of metamorphic monazite establishes a Pan-African age for tectonism in the Nallamalai Fold Belt, India: Journal of Geological Society, 174(6), 1062.
[27]Zi, J.-W., Gregory, C., Rasmussen, B., Sheppard, S., and Muhling, J. R., 2017, Testing the plume model for carbonatite genesis: Gifford Creek Carbonatite Complex, Western Australia: Chemical Geology, v.463, p. 50-60.
[28]Qian, X.; Feng, Q.; Wang, Y.; Zhao, T.; Zi, J.-W.; Udchachon, M.; Zhang, Y.; He, H.; 2017, Late Triassic post-collisional granites in SE Thailand: Geochronology, geochemical characteristics, petrogenesis and tectonic implications for Paleotethyan evolution: submitted to Lithos, v.286, p. 440-453.
[29]Stark, JC, Wang, XC, Li, ZX, Denyszyn, SW, Rasmussen, B, Zi, JW, 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton, Precambrian Research, in press.
[30]Stark, JC, Wilde, SA, S?derlund, U, Li, ZX, Rasmussen, B, Zi, JW, First evidence of Archean mafic dykes at 2.62 Ga in the Yilgarn Craton, Western Australia: links to cratonisation and the Zimbabwe Craton, Precambrian Research, in press.
[31]Li, N., Xiao, K., Sun, L., Li, S., Zi, J.-W, Wang, K., Song, X., Ding, J., Li, C., 2018. Part I: A resource estimation based on mineral system modelling prospectivity approaches and analogical analysis: A case study of the MVT Pb-Zn deposits in Huayuan district, China. Ore Geology Reviews, in press.
[32]Stark, C.; Wang, X.-C.; Denyszyn, S.; Li, Z.-X.; Rasmussen, R.; Zi, J.-W.; Sheppard, S., 2018, Newly identified 1.89 Ga mafic dyke swarm in the Archean Yilgarn Craton, Western Australia suggests a connection with India: Precambrian Research, in press.
[33]Deng, J.; Wang, C.; Zi, J.-W.; Xia, R.; 2018, Constraining subduction-collision processes of the Paleo-Tethys along the Changning–Menglian Suture: New zircon U-Pb ages and Sr–Nd–Pb–Hf–O isotopes of the Lincang Batholith: Gondwana Research, in press.
[34]Fielding, IOH, Johnson, SP Meffre, S, Zi, J-W, Sheppard, S, Large, RR, 2018. Linking gold mineralization to regional-scale drivers of mineral systems using in situ U–Pb geochronology and pyrite LA-ICP-MS. Geoscience Frontiers, in press.
[35]Xu, X.-F., Gou, L.-L., Long, X.-P., Dong, Y.-P., Liu, X.-M., Zi, J.-W., Li, Z.-H., Zhang, C.-L., Liu, L., Zhao, J., 2018, Phase equilibrium modelling and SHRIMP zircon U–Pb dating of medium–pressure pelitic granulites in the Helanshan complex of the Khondalite Belt, North China Craton, and their tectonic implications. Precambrian Research, 314, 62-75.
[36]Stark, J.C., Wang, X.-C., Li, Z.-X., Rasmussen, B., Sheppard, S., Zi, J.-W., Clark, C., Hand, M., Li, W.-X., 2018. In situ U-Pb geochronology and geochemistry of a 1.13 Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 310, 76-92.
[37]Liu, H., Wang, Y., Li, Z., Zi, J.-W., Huangfu, P., 2018. Geodynamics of the Indosinian orogeny between the South China and Indochina blocks: Insights from latest Permian?Triassic granitoids and numerical modeling. Geological Society of America Bulletin, 130, 1289-1306.
[38]Fielding, I.O.H., Johnson, S.P., Zi, J.-W., Sheppard, S., Rasmussen, B., 2018. Neighbouring orogenic gold deposits may be the products of unrelated mineralizing events. Ore Geology Reviews, 95, 593-603.
[39]Zoheir, B., Feigenson, M., Zi, J.-W., Turrin, B., Deshesh, F., El-Metwally, A., 2018. Ediacaran (~ 600 Ma) orogenic gold in Egypt: age of the Atalla gold mineralization and its geological significance. International Geology Review, 1-16.
[40]Zi, J.-W., Rasmussen, B., Muhling, J.R., Fletcher, I.R., 2018. U-Pb geochronology of monazite in Precambrian tuffs reveals depositional and metamorphic histories. Precambrian Research, 313, 109-118.
[41]Zhao, T, Algeo, TJ, Feng, Q, Zi, JW, Xu, G, 2019. Tracing the provenance of volcanic ash in Permian–Triassic boundary strata, South China: Constraints from inherited and syn-depositional magmatic zircons. Palaeogeography, Palaeoclimatology, Palaeoecology 516, 190-202
[42]Piechocka, A. M., Zi, J. W., Gregory, C. J., Sheppard, S. and Rasmussen, B. 2019. SHRIMP U–Pb phosphate dating shows metamorphism was synchronous with magmatism during the Paleoproterozoic Capricorn Orogeny. Australian Journal of Earth Sciences, 1-18.
[43]Zhao, T, Cawood, PA, Zi, JW, Wang, K, Feng, Q, Nguyen, QM, Tran, DM, 2019. Early Paleoproterozoic magmatism in the Yangtze Block: Evidence from zircon U-Pb ages, Sr-Nd-Hf isotopes and geochemistry of ca. 2.3 Ga and 2.1 Ga granitic rocks in the Phan Si Pan Complex, north Vietnam, Precambrian Research, 324, 253-268.
[44]Nguyen, QM, Feng, Q, Zi, JW, Zhao, T, Tran, HT, Ngo, TX, Tran, DM, Nguyen, HQ, 2019. Cambrian intra–oceanic arc trondhjemite and tonalite in the Tam Ky–Phuoc Son Suture Zone, central Vietnam: Implications for the early Paleozoic assembly of the Indochina Block. Gondwana Research 70, 151-170.
[45]Zi, J.-W., Rasmussen, B., Muhling, J.R., Maier, W., Fletcher, I.R., 2019. U-Pb monazite ages of the Kabanga mafic-ultramafic intrusions and contact aureoles, central Africa: geochronological and tectonic implications. GSA Bulletin, in press.