人物經歷
2003-2009年西安電子科技大學本碩連讀,2009年在雷達信號處理國家重點實驗室獲得碩士學位;
2009-2012年在香港理工大學攻讀博士學位,主要從事陣列信號處理方向研究;
2012-2015年在美國杜克大學從事博士後研究,主要研究方向為計算成像和機器學習;
2015年加入美國新澤西貝爾實驗室,擔任視頻分析與編碼首席研究員;
2021年秋全職加入西湖大學,擔任工學院副教授。
學術成果
袁鑫博士致力於計算成像,包含成像系統的研發和基於機器學習的算法研究,是單次曝光壓縮成像 (Snapshot Compressive Imaging) 的主要推動者之一。在該領域頂級期刊上(如SPM、TPAMI、 Cell Patterns、 IJCV、 TIP、Optica、OE、 OL等)發表論文80多篇;在頂級會議上(如CVPR、ICCV、 ECCV、ICML、NIPS)發表論文20多篇;在業內頂級期刊 IEEE Signal Processing Magazine 發表關於SCI的綜述文章(IEEE SPM,2021),受邀在Cell子刊 The Innovation上撰寫評論文章,重點闡述了中子單像素成像與人工智慧相結合取得的突破性進展(The Innovation:Cell Press,2021年3月)。根據谷歌學術統計,論文引用4200多次(截至2021年10月),H指數33;申請國際專利20餘項(已授權10項),其中多項專利已進行產業孵化。
代表論文
(*代表通信作者)
1. X. Yuan*, Y. Liu, J. Suo, F. Durand and Q. Dai, “Plug-and-Play Algorithms for Video Snapshot Compressive Imaging,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021.
2. R. Lu, B. Chen*, G. Liu, Z. Cheng, M. Qiao and X. Yuan*, “Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent Neural Network,” International Journal of Computer Vision (IJCV), 2021.
3. Z. Meng, Z. Yu, K. Xu and X. Yuan*, “Self-supervised Neural Networks for Spectral Snapshot Compressive Imaging,” IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
4. X. Li, J. Suo, W. Zhang, X. Yuan, and Q. Dai, “Universal and Flexible Optical Aberration Correction Using Deep-Prior Based Deconvolution,” IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
5. M. Qiao, Y. Sun, J. Ma, Z. Meng, X. Liu and X. Yuan*, “Snapshot Coherence Tomographic Imaging” IEEE Transactions on Computational Imaging, 2021.
6. Z. Zha, B. Wen*, X. Yuan, J. T. Zhou, J. Zhou and C. Zhu, “Triply Complementary Priors for Image Restoration,” IEEE Transactions on Image Processing, 2021.
7. Z. Zha, X. Yuan, B. Wen, J. Zhang and C. Zhu, “Non-Convex Structural Sparsity Residual Constraint for Image Restoration,” IEEE Transactions on Cybernetics, 2021.
8. S. Zheng, C. Wang, X. Yuan* and H. Xin*, “Super-compression of large electron microscopy time-series by deep compressive sensing learning,” Cell Patterns, 2021.
9. X. Yuan* and S. Han, “Single-Pixel Neutron Imaging with Artificial Intelligence: Breaking the Barrier in Multi-Parameter Imaging, Sensitivity and Spatial Resolution,” The Innovation: Cell Press, 2021.
10. Z. Cheng, B. Chen*, G. Liu, H. Zhang, R. Lu, Z. Wang and X. Yuan*, “Memory-Efficient Network for Large-scale Video Compressive Sensing,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
11. Z. Wang, H. Zhang, Z, Cheng, B. Chen* and X. Yuan*, “Meta SCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
12. T. Huang, W. Dong*, X. Yuan*, J. Wu and G. Shi, “Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
13. Z. Zha, X. Yuan, B. Wen, J. Zhang and C. Zhu, “Non-Convex Structural Sparsity Residual Constraint for Image Restoration,” IEEE Transactions on Cybernetics, 2021.
14. M. Qiao, X. Liu and X. Yuan*, “Snapshot Temporal Compressive Microscopy Using an Iterative Algorithm with Untrained Deep Neural Networks,” Optics Letters, 2021.
15. X. Yuan*, D. Brady, and A. Katsaggelos, “Snapshot Compressive Imaging: Theory, Algorithms and Applications,” IEEE Signal Processing Magazine, vol. 38, no. 2, pp. 65-88, March 2021.
16. Z. Zha, B. Wen, X. Yuan, J. Zhou, C. Zhu and A. C. Kot, “A Hybrid Structural Sparsification Error Model for Image Restoration," IEEE Transactions on Neural Networks and Learning Systems, 2021.
17. S. Zheng, Y. Liu, Z. Meng, M. Qiao, Z. Tong, X. Yang, S. Han and X. Yuan*, “Deep Plug-and-Play Priors for Spectral Snapshot Compressive Imaging," Photonics Research, vol. 9, B18-B29, 2021.
18. S. Lu, X. Yuan and W. Shi, “An Integrated Framework for Compressive Imaging Processing on CAVs,” The Fifth ACM/IEEE Symposium on Edge Computing (SEC), San Jose, CA, USA, November 2020.
19. Z. Meng, J. Ma, X. Yuan*, “End-to-End Low Cost Compressive Spectral Imaging with Spatial-Spectral Self-Attention,” European Conference on Computer Vision (ECCV), 2020.
20. Z. Cheng, R. Lu, Z. Wang, H. Zhang, B. Chen*, Z. Meng, X. Yuan*, “BIRNAT: Bidirectional Recurrent Neural Networks with Adversarial Training for Video Snapshot Compressive Imaging,” European Conference on Computer Vision (ECCV), 2020.
21. X. Yuan, Y. Liu, J. Suo and Q. Dai, “Plug-and-Play Algorithms for Large-scale Snapshot Compressive Imaging," IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, June 2020.
22. Q. Xu, X. Yuan, and C. Ouyang, “Class-aware Domain Adaptation for Semantic Segmentation of Remote Sensing Images," IEEE Transactions on Geoscience and Remote Sensing, 2020.
23. Z. Meng, M. Qiao, J. Ma, Z. Yu, K. Xu, and X. Yuan*, “Snapshot Multispectral Endomicroscopy”, Optics Letters, vol. 45, issue 4. pp. 3897-3900, 2020. DOI: 10.1364/OL.393213.
24. Z. Zha, X. Yuan, J. Zhou, C. Zhu and B. Wen, “Image Restoration via Simultaneous Nonlocal Self-Similarity Priors,” IEEE Transactions on Image Processing, vol. 29, pp. 8561-8576, 2020.
25. Z. Zha, X. Yuan, B. Wen, J. Zhang, J. Zhou and C. Zhu, “Image Restoration Using Joint Patch-Group Based Sparse Representation,” IEEE Transactions on Image Processing, vol. 29, pp. 7735-7750, 2020.
26. M. Qiao, Z. Meng, J. Ma and X Yuan*, “Deep Learning for Video Compressive Sensing," APL Photonics (Invited paper for Special Topic: Photonics and AI), vol.5, Issue 3, 2020. Selected as the feature article and reported by Scilight “Deep learning speeds up video compressive sensing from days to minutes” at: https://doi.org/10.1063/10.0000928.
27. M. Qiao, X. Liu and X Yuan*, “Snapshot spatial-temporal compressive imaging," Optics Letters, vol 45, pp. 1659-1662, 2020.
28. X Yuan and R. Haimi-Cohen, “Image Compression Based on Compressive Sensing: End-to-End Comparison with JPEG," IEEE Transactions on Multimedia, vol. 22, no. 11, pp. 2889-2904, Nov. 2020.
29. Z. Zha, X Yuan, B. Wen, J. Zhou, J. Zhang and C. Zhu, “A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization,” IEEE Transactions on Image Processing, vol. 29, pp. 5094-5109, 2020.
30. Z. Zha, X Yuan, B. Wen, J. Zhou, J. Zhang and C. Zhu,” From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration," IEEE Transactions on Image Processing, vol. 29, pp. 3254-3269, 2020.
31. J. Ma, X-Y. Liu, Z. Shou and X. Yuan, “Deep Tensor ADMM-Net for Snapshot Compressive Imaging," IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, October 2019.
32. X. Miao, X. Yuan*, Y. Pu and V. Athitsos, “Lambda-net: Reconstruct Hyperepsectral Images from a Snapshot Measurement," IEEE International Conference on Computer Vision (ICCV), Seoul, Korea, October 2019.
33. S. Jalali and X Yuan, “Snapshot Compressed Sensing: Performance Bounds and Algorithms," IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8005-8024, Dec. 2019.
34. Y. Liu, X. Yuan, J. Suo, D. Brady and Q. Dai, “Rank Minimization for Snapshot Compressive Imaging”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 12, pp. 2990-3006, 1 Dec. 2019.
35. X. Zhang, X. Yuan* and L. Carin, “Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, June 2018.
36. Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens and L. Carin, "Variational Autoencoder for Deep Learning of Images, Labels and Captions," Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016.
37. Y. Pu, X. Yuan, A. Stevens, C. Li and L. Carin, "A Deep Generative Deconvolutional Image Model," International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, May 2016.
38. X. Yuan, R. Henao, E. L. Tsalik and L. Carin, "Non-Gaussian Discriminative Factor Models via the Max-Margin Rank Likelihood", International Conference on Machine Learning (ICML), Lille, France, July 2015.
39. P. Llull, X. Yuan, L. Carin, and D. J. Brady, “Image Translation for Single-Shot Focal Tomography,” Optica, vol. 2, Issue 9, pp. 822-825, 2015.
40. R. Henao, X. Yuan and L. Carin, "Bayesian Nonlinear Support Vector Machines and Supervised Factor Modeling," Neural Information Processing Systems (NIPS), Montreal, Canada, December 2014.
41. X. Yuan, P. Llull, X. Liao, J. Yang, G. Sapiro, D. J. Brady, and L. Carin, "Low-Cost Compressive Sensing for Color Video and Depth," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014.