胡永建,男,北京師範大學數學科學學院副院長、教授、博士生導師。
基本介紹
- 中文名:胡永建
- 職業:教師
- 畢業院校:北京師範大學
- 學位/學歷:博士
- 專業方向:矩陣理論及套用、數值代數
- 職務:北京師範大學數學科學學院副院長
- 任職院校:北京師範大學
- 職稱:教授
人物經歷,研究方向,研究成果,科研項目,代表性論著,所獲榮譽,
人物經歷
1994年本科畢業於北京師範大學數學系,1999年獲北京師範大學理學博士學位,畢業後留校工作至今。曾任北京師範大學數學系黨總支副書記,現任數學科學學院副院長。
研究方向
主要從事矩陣論及套用方面的研究工作。
某些矩陣的元素分布具有位移不變性,我們把這樣的矩陣稱為位移結構矩陣。近期主要研究位移結構矩陣的理論及其在多項式慣性與穩定性,函式插值,矩陣快速計算等問題中的套用。
研究成果
科研項目
國家自然科學基金項目:結構矩陣理論在若干插值問題中的套用
代表性論著
[1] On rank variation of block matrices generated by Nevanlinna matrix functions, Math. Nachr. 282(2009), no. 4, 611-631.
[2] On boundary Nevanlinna-Pick interpolation for Carathéodory matrix functions. Linear Algebra and its Applications, 423(2007), no.2-3, 209-229.
[3] Generalized Hermite formula for the two-sided Lagrange-Sylvester Interpolation. Journal of Computational and Applied Mathematics, 173(2005), no. 2, 345-458.
[4] A unified treatment for the matrix Stieltjes moment problem. Linear Algebra and its Applications, 380(2004), 227-239.
[5] Mixed mean inequalities for serveral positive definite matrices. Linear Algebra and its Applications, 395(2005), 247-263
[6] Tangential Nevanlinna-Pick inter polation and its connection with Hamburger matrix moment problem. Integral Equations and Operator Theory, 49 (2004), no.4, 445-460
[2] On boundary Nevanlinna-Pick interpolation for Carathéodory matrix functions. Linear Algebra and its Applications, 423(2007), no.2-3, 209-229.
[3] Generalized Hermite formula for the two-sided Lagrange-Sylvester Interpolation. Journal of Computational and Applied Mathematics, 173(2005), no. 2, 345-458.
[4] A unified treatment for the matrix Stieltjes moment problem. Linear Algebra and its Applications, 380(2004), 227-239.
[5] Mixed mean inequalities for serveral positive definite matrices. Linear Algebra and its Applications, 395(2005), 247-263
[6] Tangential Nevanlinna-Pick inter polation and its connection with Hamburger matrix moment problem. Integral Equations and Operator Theory, 49 (2004), no.4, 445-460
所獲榮譽
入選教育部2010年度新世紀優秀人才支持計畫。