耐剪牆

耐剪牆

耐剪牆又稱抗風牆、抗震牆或結構牆。房屋或構築物中主要承受風荷載或地震作用引起的水平荷載和豎向荷載(重力)的牆體,防止結構剪下(受剪)破壞。又稱抗震牆,一般用鋼筋混凝土做成。

基本介紹

  • 中文名:耐剪牆
  • 別名:抗風牆、抗震牆
  • 拼音:nài jiǎn qiáng
  • 功能:承受載荷抗震、
  • 相關概念:剪力
  • 材質:鋼筋混凝土
分類,結構特點,維護,

分類

它分平面剪力牆和筒體剪力牆。平面剪力牆用於鋼筋混凝土框架結構、升板結構、無樑樓蓋體系中。為增加結構的剛度、強度及抗倒塌能力,在某些部位可現澆或預製裝配鋼筋混凝土剪力牆。現澆剪力牆與周邊梁、柱同時澆築,整體性好。筒體剪力牆用於高層建築高聳結構和懸吊結構中 ,由電梯間、樓梯間、設備及輔助用房的間隔牆圍成,筒壁均為現澆鋼筋混凝土牆體,其剛度和強度較平面剪力牆可承受較大的水平荷載。牆根據受力特點可以分為承重牆和剪力牆,前者以承受豎向荷載為主,如砌體牆;後者以承受水平荷載為主。在抗震設防區,水平荷載主要由水平地震作用產生,因此剪力牆有時也稱為抗震牆。剪力牆 按結構材料可以分為鋼板剪力牆、鋼筋混凝土剪力牆和配筋砌塊剪力牆。其中以鋼筋混凝土剪力牆最為常用。

結構特點

①結合建築平面,利用間隔牆位置來布置豎向構件,基本上不與建築使用功能發生矛盾;
②牆的數量可多可少,肢長可長可短,主要視抗側力的需要而定,還可通過不同的尺寸和布置來調整剛度中心的位置;
③能靈活布置,可選擇的方案較多,樓蓋方案簡單;
④連線各牆的梁,隨牆肢位置而設於間隔牆豎平面內,可隱蔽;
⑤根據建築平面的抗側剛度的需要,利用中心剪力牆,形成主要的抗側力構件,較易滿足剛度和強度要求。
對短肢剪力牆結構的設計計算,因是剪力牆大開口而成,所以基本上與普通剪力牆結構分析相同,可採用三維桿-系簿壁柱空間分析方法或空間桿-牆組元分析方法,前者如建研院的TBSA、TAT、廣東省建築設計院的廣廈CAD的SS模組;後者如建研院的TBSSAP、SATWE、清華大學的TUS、廣東省建院的SSW等。其中空間桿牆組元分析方法計算模型更符合實際情況,精度較高。雖然三維桿系-簿壁柱空間分析程式使用較早、套用較廣,但對牆肢較長的短肢剪力牆,應該用空間桿-牆組元程式進行校核。在進行以上分析後,按《高層建築結構設計與施工規範》進行截面與構造設計,相對於異形柱結構,短肢剪力牆結構的理論與實踐較為成熟,但這種結構在結構設計中仍然有需要引起重視的方面。
由於短肢剪力牆結構相對於普通剪力牆結構其抗側剛度相對較小,設計時宜布置適當數量的長牆,或利用電梯,樓梯間形成剛度較大的內筒,以避免設防烈度下結構產生大的變形,同時也形成兩道抗震設防;短肢剪力牆結構的抗震薄弱部位是建築平面外邊緣的角部處的牆肢,當有扭轉效應時,會加劇已有的翹曲變形,使其牆肢首先開裂,應加強其抗震構造措施,如減小軸壓比,增大縱筋和箍筋的配筋率;高層短肢剪力牆結構在水平力作用下,呈現整體彎曲變形為主,底部外圍小牆肢承受較大的豎向荷載和扭轉剪力,由一些模型試驗反映出外周邊牆肢開裂,因而對外周邊牆肢應加大厚度和配筋量,加強小牆肢的延性抗震性能。短肢牆應在兩個方向上均有連線,避免形成孤立的“一”字形牆肢;各牆肢分布要儘量均勻,使其剛度中心與建築物的形心儘量接近,必要時用長肢牆來調整剛度中心;高層結構中的連梁是一個耗能構件,在短肢剪力牆結構中,牆肢剛度相對減小,連線各牆肢間的梁已類似普通框架梁,而不同於一般剪力牆間的連梁,不應在計算的總體信息中將連梁的剛度大幅下調,使其設計內力降低,應按普通框架梁要求,控制砼壓區高度,其梁端負彎矩鋼筋可由塑性調幅70~80%解決。按強剪弱彎、強柱弱梁的延性要求進行計算, 剪力牆的計算。

維護

根據在實際工程中的施工經驗,綜合對裂縫的研究現狀。鋼筋混凝土剪力牆的裂縫一般可分為表面不規則裂縫、貫穿性裂縫。表面不規則裂縫一般出現在混凝土澆注後不久,分布於牆體表面,此種裂縫既寬又密,但深度一般不大,多因養護不足而產生,對結構構件影響一般不大,且易於治理。豎向貫穿性裂縫一般發生在混凝土澆注後若干天后(一般拆模後不久),由下而上,走向與樓面接近垂直,有的通至樓面板底但不穿過樓層,縫寬一般為0.1~0.3mm,個別可達0.4~0.5mm,縫深一般較大,最深者可貫穿牆體。因養護不好引起的表面不規則裂縫常不至於帶來多少影響,且易於處理。一般情況下,工程中構件裂縫產生的主要原因可分為兩大類:一是動、靜荷載和其他各種外荷載引起的;二是由混凝土內外溫差、收縮或地基不均勻沉降等變形荷載引起的。此外,設計體型和結構布置也是產生裂縫的一個重要原因。總之裂縫產生的原因很複雜,綜合考慮設計、材料、施工及環境等各方面的因素,鋼筋混凝土剪力牆裂縫主要由以下原因產生:
混凝土的收縮應力過大
混凝土的收縮應力過大收縮裂縫主要與水泥用量、骨料、構件長度及外加劑等因素有關
(1)水泥用量
隨著我國高層建築的不斷發展,各種高強度混凝土也得到了廣泛的套用,C50、C60乃至C80混凝土設計標號已屢見不鮮,由此相應的是水泥用量的增大、水灰比的減小。而水灰比是影響混凝土收縮的最主要因素。例如,當水灰比小於0.35時。體內相對濕度很快降至80%以下,自收縮引起的體積減小在8%左右,收縮值相當可觀。
(2)骨料
預拌混凝土為了滿足運輸、泵送的要求。增加了細骨料用量,使得骨料的表面積增大,相應包裹在骨料上的水泥等膠凝材料變少,減弱了混凝土之間的連線能力,增大了混凝土的塑性收縮。
(3)構件長度  現代建築的跨度、構件長度均有較大提高。
(4)外加劑
外加劑在混凝土中摻量少,作用大。使用的混凝土中普遍摻有減水劑、緩凝劑、早強劑、防水劑等多種外加劑。研究表明,有近一半外加劑會造成混凝土收縮率大於基準混凝土,混凝土收縮率的增大自然增大了裂縫的出現機率。外加劑對混凝土性能影響極大,可能是導致混凝土開裂的重要原因。
混凝土的溫度應力過大
溫度裂縫主要與水泥品種、養護條件、拆模時間及溫差等因素有關:
(1)水泥品種預拌混凝土大多使用新法(主要為旋窯)燒製成的水泥,尤其為提高混凝土標號,大量使用矽酸鹽水泥,使得水泥水化熱高且集中。水泥水化過程中放出大量的熱量,且大部分水化熱都是在澆築的前三天釋放,而混凝土是熱的不良導體,產生的熱量不易散發,內部溫度不斷上升。而拆模後,表面散熱快,溫度較低,內外形成溫度梯度。內部混凝土熱脹產生壓應力,外部混凝土產生拉應力。當此拉應力超過此時混凝土的抗拉強度時,便使混凝土產生裂縫開裂。(2)養護條件由於剪力牆養護不足,牆體表面積大水分散失快,體積收縮大,而內部濕度變化相對較小,體積收縮較小,表面收縮變形受到內部混凝土的約束而產生拉應力,引起混凝土表面開裂。(3)拆模時間牆體模板的拆除時間過早,混凝土表面溫度急劇變化,產生較大的降溫收縮,表面受到內部混凝土的約束,將產生很大的拉應力(內部混凝土溫度變化相對較小,受自約束而產生壓應力),而混凝土早期抗拉強度和彈性模量較低,因而出現牆體表面較淺範圍內的裂縫。另外在室外溫差較大的嚴冬和盛夏,由於混凝土結構不易導熱,在結構的頂部和底部常產生溫度裂縫。
剪力牆所受的各種約束
出現了上述混凝土材料的溫度和收縮應力,如果結構或構件不受約束影響,那么其將自由變形也不會產生裂縫。但實際工程中的剪力牆結構構件受到各種約束的影響,如樓板、剪力牆的暗柱(或明柱)及端牆的約束,地下室側牆受到地下室頂板和底板的約束。這些約束使得剪力牆結構構件不能自由變形或者跟約束構件的變形不同步(或協調)而導致裂縫的產生。
預防和治理措施
(1)調整混凝土各組分。如採用高標號水泥,減小水泥用量;儘量使用低水化熱的水泥;嚴格控制外加劑的品種及用量;砂宜採用中砂,保證石子級配良好,並嚴格控制砂石含泥量。
(2)拆模及養護。適當延長剪力牆混凝土的拆模時間,並且拆模時不要馬上移走模板,而是先讓模板拆開一條縫隙作澆水養護用,從而改善混凝土的養護環境以達到控制牆體裂縫的目的。特別是預拌混凝土早期水化快,水化熱發展快,拌合物保水性強,泌水小,為此,施工過程中應特別注意加強養護環節的管理及防護措施的套用。施工中當混凝土密實後,應儘可能早地覆蓋養護,及時噴水,適當延長養護時間,這樣,既可以減少內外部溫差,又可以保證早期濕養護和後期養護的最佳效果。
(3)混凝土中摻加膨脹劑。膨脹劑由於在一定程度上補償了收縮應力,能有效減少混凝土收縮裂縫。
(4)剪力牆上增開"結構小洞"。這可能是最有效的方法,通過開洞把長牆變成短牆,減少混凝土收縮變形的約束,使混凝土收縮應力得到釋放,從而達到控制牆體裂縫的目的,但必需重新對結構進行計算,確保結構的安全及正常的使用功能。
(5)留置後澆帶。即先澆注後澆帶兩側混凝土,約兩個月後當混凝土收縮變形趨於穩定時,再澆築留縫部位,從而避免因收縮應力而出現裂縫。
(6)在剪力牆中部設定暗梁(或設定頂部暗圈樑)。這樣貫穿性裂縫只能裂到梁底,而不至裂到樓面板底,可有效減小有害裂縫的長度。
(7)調整水平鋼筋配筋方案。將剪力牆水平鋼筋置於豎向鋼筋外側,有效減小了混凝土保護層厚度,增強了剪力牆表層混凝土的抗裂性。
(8)增加抗收縮鋼筋。遵循配筋細而密可抵抗收縮應力的原則,適當增加水平鋼筋的配筋率、減小鋼筋直徑而縮小配筋間距。另外在對剪力牆造成約束的結構構件與其連線處增設鋼筋對裂縫亦能起到一定的抑制作用。
(9)裂縫補強治理措施。當裂縫不能自我癒合,且長期存在會給結構構件帶來耐久性、安全性和建築使用功能等方面的影響而必須給予治理時,可待裂縫發展穩定後,針對不同大小的裂縫採取相應的有關治理措施。

相關詞條

熱門詞條

聯絡我們