基本信息
產品尺寸及重量: 22.8 x 16.2 x 5.6 cm ; 1 Kg
ASIN: B004W66W2S
內容簡介
《美國中學代數(套裝上下冊)》內容簡介:We are honored and happy to bring this set of math textbooks by Joseph Ray. These popular books sold more than any other arithmetic in America, in fact over 120 million copies and are still used in modern American schools and families. As you can see, this set of textbooks is organized in an orderly manner around the discipline of arithmetic itself.
Ray emphasized critical thinking in his classroom. He believed that his students needed to learn how to apply what they learned to real-life situations. Rather than giving his pupils simple problems to solve, he preferred word problems. Students can increase their reading comprehension skills, and learn to think.
The science of Algebra, properly taught, stands among the first of those studies essential to both the great objects of education. In a course of instruction properly arranged, it naturally follows Arithmetic, and should be taught immediately after it. The pupil should acquire both a practical and theoretical knowledge of the subject While every page is the result of the author's own reflection, and the experience of many years in the school-room.
編輯推薦
《美國中學代數(套裝上下冊)》編輯推薦:這套《美國數學》系列與麥加菲編寫的《
美國語文讀本》,應該說對
美國教育產生了很大影響。兩套教材自19世紀以來,被10000多所
學校使用,累計
銷量分別高達1.22億冊,至今仍作為“家庭學校”(Homeschooling)的推薦教材。雷伊數學課本,是一套系統完整的中國小數學教材,從簡單的算術開始,到高級的代數與解析幾何。在近50年裡,雷伊數學課本一直被作為美國標準數學
教材,10000多所學校採用,超過一億的美國孩子用此套數學教材接受教育。直到,現在仍作為學生學習和備考AST的參考用書。
對中國學生來說,《美國中學代數(套裝上下冊)》能幫助學生用英語學習數學,既提高他們的英語水平,也幫助他們將來更好地適應西方學科考試。
作者簡介
約瑟夫·雷伊
約瑟夫·雷伊教授於1807年出生於美國維吉尼亞俄亥俄縣,小時在地方學校接受教育,學業優秀。16歲時,他就開始步入其教師生涯,1825年到富蘭克林學院求學,跟隨喬爾·馬丁教授學習醫學。1828年畢業後進入俄亥俄醫學院學習,1831年畢業。大學畢業後,他在辛辛那提的伍德沃德中學找了份當教師的工作,開始教數學。1836年,俄亥俄司法當局準許伍德沃德中學由高中升格為辛辛那提伍德學院,雷伊成為該學院的一名教授。1851年,該校以變為一所公立高中,雷伊一直在此擔任校長,直至去世。
雷伊最傑出的貢獻是他編寫的系列數學教材,並以此聞名。這套數學課本與他在伍德學院的同事麥加菲編寫的《美國語文讀本》,一同被作為美國學校的語文和數學教材,近50年內,美國上萬學校使用這兩套教材,累計銷量均超過1.22億冊,對美國教育產生了極大影響。
雷伊教授對俄亥俄州的教師職業培訓也發揮了很大作用,他幫助建立西部文化中心與職業教師學院,將好的教學技術與經驗傳授給老師。他加入俄亥俄州教師協會成員,並於1853年任其會長,此外還擔任《俄亥俄教育》雜誌社的副總編。
目錄
Ⅰ.DEFINITIONS1
ADDITION9
SUBTRACTION.11
MULTIPLICATION..17
DIVISION24
Ⅱ.ALGEBRAIC THEOREMS.32
FACTORING.37
GREATEST COMMON DIVISOR41
LEAST COMMON MULTIPLE.47
Ⅲ.ALGEBRAIC FRACTIONS49
Ⅳ.SIMPLE EQUATIONS68
Ⅴ.SUPPLEMENT TO SIMPLE EQUATIONS103
Ⅰ.GENERALIZATION.103
Ⅱ.NEGATIVE SOLUTIONS108
Ⅲ.DISCUSSION OF PROBLEMS110
Ⅳ.PROBLEM OF THE COURIERS.111
Ⅴ.A SIMPLE EQUATION HAS BUT ONE ROOT.117
Ⅵ.EXAMPLES INVOLVING THE SECOND POWER OF THE
UNKNOWN QUANTITY117
Ⅵ.OF POWERS,ROOTS,RADICALS,AND LNEQUALITIES..118
Ⅰ.INVOLUTION,OR FORMATION OF POWERS118
Ⅱ.EXTRACTION OF THE SQUARE ROOT127
Ⅲ.EXTRACTION OF THE CUBE ROOT139
Ⅳ.EXTRACTION OF THE FOURTH ROOT,SIXTH ROOT,NTH
ROOT,ETC148
Ⅴ.RADICAL QUANTITIES151
Ⅵ.THEORY OF FRACTIONAL EXPONENTS.166
Ⅶ.EQUATIONS CONTAINING RADICALS169
Ⅷ.INEQUALITIES.171
Ⅶ.QUADRATIC EQUATIONS176
AFFECTED QUADRATIC EQUATIONS181
TRINOMIAL EQUATIONS.202
SIMULTANEOUS QUADRATIC EQUATIONS CONTAINING TWO
OF MORE UNKNOWN QUANTITIES210
AFFECTED EQUATIONS.214
Ⅷ.RATIO,PROPORTION,AND PROGRESSIONS226
PROPORTION229
GEOMETRICAL PROGRESSION249
Ⅸ.PERMUTATIONS,COMBINATIONS,AND BINOMIAL
THEOREM259
Ⅹ.INDETERMINATE COEFFICIENTS:BINOMIAL THEOREM,
GENERAL DEMONSTRATION:SUMMATION AND
INTERPOLATION OF SERIES270
THEOREM270
BINOMIAL THEOREM275
THE DIFFERENTIAL METHOD OF SERIES283
PILING OF CANNON BALLS AND SHELLS..288
INTERPOLATION OF SERIES.292
INFINITE SERIES..295
RECURRING SERIES.299
REVERSION OF SERIES.303
Ⅺ.CONTINUED FRACTIONS:LOGARITHMS:EXPONENTIAL
EQUATIONS:INTEREST,AND ANNUITIES.306
CONTINUED FRACTIONS306
LOGARITHMS.314
COMPUTATION OF LOGARITHMS322
NAPERIAN,OF HYPERBOLIC LOG ARITHMS.327
SINGLE AND DOUBLE POSITION331
EXPONENTIAL EQUATIONS333
INTEREST AND ANNUITIES.335
Ⅻ.GENERAL THEORY OF EQUATIONS341
TRANSFORMATION OF EQUATIONS.352
LIMITS OF THE ROOTS OF EQUATIONS.363
STURM’S THEOREM.367
ⅩⅢ.RESOLUTION OF NUMERICAL EQUATIONS374